tualimforum.com  

Geri git   tualimforum.com > EĞİTİM ve ÖĞRETİM > Dersler/Ödevler > Matematik - Geometri
Kayıt ol Yardım Üye Listesi Ajanda Bugünki Mesajlar

Matematik - Geometri Matematik ödevleri,Geometri ödevleri...


Konu Bilgileri
Konu Başlığı
Reel Sayılar
Konudaki Cevap Sayısı
0
Şuan Bu Konuyu Görüntüleyenler
 
Görüntülenme Sayısı
1058

Yeni Konu aç  Cevapla
 
LinkBack Seçenekler
Alt 13.09.11, 00:38   #1 (permalink)
Kullanıcı Profili
S.Moderators
 
SERDEM - ait Kullanıcı Resmi (Avatar)
Kullanıcı Bilgileri
Üyelik tarihi: Mar 2008
Mesajlar: 7.687
Konular: 6910
Puan Grafiği
Rep Puanı:11076
Rep Gücü:20
RD:SERDEM has a reputation beyond reputeSERDEM has a reputation beyond reputeSERDEM has a reputation beyond reputeSERDEM has a reputation beyond reputeSERDEM has a reputation beyond reputeSERDEM has a reputation beyond reputeSERDEM has a reputation beyond reputeSERDEM has a reputation beyond reputeSERDEM has a reputation beyond reputeSERDEM has a reputation beyond reputeSERDEM has a reputation beyond repute
Teşekkür

Ettiği Teşekkür: 47
464 Mesajına 935 Kere Teşekkür Edlidi
:
Standart Reel Sayılar

Reel Sayılar


Matematikte Reel sayılar (gerçek ya da gerçel sayılar) kümesi, oranlı sayılar (rasyonel sayılar) kümesinin standart metriğe göre bütünlenmesiyle elde edilen kümedir. Reel sayılar kümesi sembolüyle gösterilir.

Her oranlı sayı (rasyonel sayı) bir gerçel sayıdır; virgülden sonra bloklar halinde tekrar eden ondalık açılımı vardır (0 dahil). Örneğin,

eşitlikliğinde olduğu gibi. Burada dikkat edilmesi gereken, ondalık basamaklardaki rakamların bir süre sonra bloklar halinde periyodik tekrar etme özelliğidir. Bu şöyle ispatlanabilir: m, n iki tamsayı (n pozitif) olsun. m/n oranlı sayısı ondalık ifade edilmek istendiğinde, m ‘yi n ‘ye bölerken (bölme algoritmasını uygularken) ilk adımda kalan 0 ile n arasında olacaktır. Kalanın yanına sıfırlar ekleyip bölmeye devam edilecek ve bir sonraki adımda kalan yine 0 ile n arasında olacaktır. Sonsuz adımda sonlu sayıda değer alabilen kalanlar, bir süre sonra aynı değeri alacak ve kendini tekrar edecektir.

Oranlı sayılardan gerçel sayıları elde etme işlemiyse oranlı sayılara ondalık açılımındaki rakamların devirsel tekrar etmediği sayıların eklenmesi olarak düşünülebilir. Bu tür sonradan elde ettiğimiz gerçel sayılara oransız sayılar veya irrasyonel sayılar denir.

Düzlemde herhangi bir doğru parçası alıp buna birim uzunluk diyelim. Tamsayılarla bu doğru parçasının katları birebir eşlensin. Alınan bir doğrunun üzerinde bu tamsayı uzunlukları ve olası tüm oranları (oranlı sayılar) işaretlensin. Gösterilebilir ki, herhangi iki oranlı sayı arasında sonsuz çoklukta oranlı sayı vardır. Demek oluyor ki, alınan doğru üzerinde birbirlerine istenildiği kadar yakın ve oranlı sayıları temsil eden iki nokta (oranlı nokta) arasında , sonsuz çoklukta oranlı nokta vardır.

Bu tür noktaların, dolayısıyla uzunlukların varlığını ispatlamak için, kenar uzunluğu 1 birim olan bir karenin köşegen uzunluğunu (x) sayı doğrusu üzerinde işaretleyelim. x uzunluğu, oranlı bir sayı değildir, yani p ve q birer tamsayı olmak üzere p/q şeklinde gösterilemeyen bir sayıdır; bu sayı olarak gösterilecektir.

Kabul edelim ki x=p/q olsun. Bundan başka, bu kesrin artık kısaltılamayan bir kesir olduğunu farz edelim, yani p ve q aralarında asal olsunlar. Başka bir deyişle, bunların 1′den başka ortak bölenleri bulunmasın. Pisagor teoremi sayesinde x2=2=p2/q2 elde edilir. Dolayısıyla 2q2=p2 olur. p ve q aralarında asal olduğu için 2, p ‘yi bölmek zorundadır. Böylece eşitliğin sağ tarafı 4′e bölünür. Sol tarafının da dörde bölünmesi gerekeceğinden q da 2′ye bölünmek zorunda kalır. Hem p hem de q sayıları 2′ye bölünebiliyorsa, aralarında asallık kabulüyle çelişkili bir sonuç bulunmuş olur. O halde x ‘in oranlı bir sayı olduğu kabulünden vazgeçmek gerekecektir.

Bu ispat, bir Pisagorcu olan Hippasus’a atfedilmektedir (İ.Ö: 5. yüzyıl). İrrasyonel sayıların varlığının ilk antik Yunan matematikçi Pisagor’un okulu tarafından anlaşılmış olduğu görüşü yaygındır. Fakat Pisagor bu sayıların evrenin düzenine aykırı olduğunu düşünmüş ve öğrencilerine bu sayıların varlığını açıklamayı yasaklamıştır. Rivayete göre Hippasus’u o öldürtmüştür.

Gerçel Sayılar ile oranlı sayılar kümesinin birleşimi Gerçel sayılar kümesini oluşturur. Bu kümeye reel sayılar veya gerçel sayılar da denir. Geometride karşılaşılan bazı büyüklüklerin anlamlandırılabilmesi için Klasik Yunan Dönemi’nde, yaygın inanca göre Pisagor ve öğrencileri tarafından sayı kavramına dâhil edilmişlerdir. Anlatılanlara göre Pisagor doğadaki tüm büyüklüklerin rasyonel sayılarla ifade edilebileceğini söylemekteydi. Fakat bulduğu hipotenüs eşitliğinin bir sonucu olarak x2 = 2 gibi bir değerlerle karşılaştı. Uzun yıllar boyu bu tür sayıların uzun kesirlerle ifade edilebileceğini iddia etti ve göstermeye çalıştıysa da, öğrencilerinden birinin bu gibi sayıların kesinlikle kesirli bir biçimde gösterilemeyeceğini ispat etmesiyle ikna olur ama hayatı boyu bunun bir sır gibi gizlenmesi için çalışır ve doğada gerçel sayıların yeri olmadığını söylemeye devam eder. Gerçel sayılar kümesi harfi ile ifade edilir. İrrasyonel sayılar kümesi ile rasyonel sayılar kümesinin birleşimi reel sayıları oluşturur. Bu kümeye ‘gerçel’ veya ‘gerçek’ sayılar da denir. Geometride karşılaşılan bazı büyüklüklerin anlamlandırılabilmesi için Klasik Yunan Dönemi’nde, yaygın inanca göre Pisagor ve öğrencileri tarafından sayı kavramına dahil edilmişlerdir.

Doğal sayıları için nx≤y dir. Bu durumda y/x, N doğal sayılar kümesi için bir üst sınırdır. Böylece N, R nin boş olmayan bir altkümesi olup üstten sınırlıdır ve en küçük üst sınır özelliğinden bir s supremuma (e.k.ü.s.’e) sahiptir. s-1< s olduğundan s-1, N için bir üst sınır olamaz. Bu yüzden, N ‘nin s-1 den büyük olan bir n elemanı var olmalıdır. Ancak eğer n>s-1 ise n+1>solur. Bu da s ‘nin N nin supremumu olması ile çelişir. Bu da bizi varsayımımızın karşıtına götürür. Yani her bir n için n<=x olamaz.


alıntı
--------------Tualimforum İmzam--------------
Aksini Belirtmediğim Takdirde Yazdığım Konular ALINTIDIR



Liseler - Anadolu Liseleri - Fen Liseleri

Anaokulu - İlköğretim

Sınav Soruları ve Ders Notları
SERDEM isimli Üye şimdilik offline konumundadır   Alıntı ile Cevapla
Cevapla

Tags
gerçel sayılar, irrasyonel sayılar, oranlı sayılardan gerçel sayıları elde etme, rasyonel sayılar, reel, reel sayılar, sayilar


Konuyu Toplam 1 Üye okuyor. (0 Kayıtlı üye ve 1 Misafir)
 

Yetkileriniz
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is Açık
Smileler Açık
[IMG] Kodları Açık
HTML-KodlarıKapalı
Trackbacks are Açık
Pingbacks are Açık
Refbacks are Açık


Benzer Konular
Konu Konuyu Başlatan Forum Cevaplar son Mesaj
Reel Sayılar SERDEM Matematik - Geometri 0 08.08.08 16:57
Tam Sayılar SERDEM Matematik - Geometri 0 08.08.08 15:40
Üslü Sayılar SERDEM Matematik - Geometri 0 08.08.08 15:21
Doğal Sayılar SERDEM Matematik - Geometri 0 08.08.08 13:51
Rasyonel Sayılar tualim Matematik - Geometri 0 05.03.08 10:10


Bütün Zaman Ayarları WEZ +3 olarak düzenlenmiştir. Şu Anki Saat: 12:47 .


Powered by vBulletin Version 3.8.7
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Search Engine Optimization by vBSEO 3.6.0 RC 2