İkinci Dereceden Denklemler İkinci Dereceden Denklemler MÖ 2000'lerde Mezopotamyalılar ikinci dereceden denklemlerin pozitif kökünü (çözümünü) bulmak için algoritma geliştirmişlerdi. Mısırlıların da MÖ 2160-1700 tarihleri arasında ikinci dereceden denklemlerin kökünü bulmayı bildikleri Berlin papirüsünden anlaşılıyor. Ama o zamanlar daha "denklem" kavramı gelişmemişti ve gerçek yaşamdan alınan problemlerde ortaya çıkan, dolayısıyla pozitif kökleri (genellikle bir uzunluk) olan denklemlerle uğraşılırdı. Yunanlılar MÖ 300 yıllarında ikinci dereceden bir denklemi geometrik yöntemlerle çözebiliyorlardı. Yunanlılar için de bir sayı daha çok bir uzunluktu. Yunanlı Diofantus ikinci dereceden denklemleri çözebiliyordu, ama köklerden sadece birini buluyordu, köklerin her ikisi de pozitif olduğu zaman bile. Hintli Aryabhata her iki kökü birden bulmasını biliyodu. Ama bu bilgi daha sonra unutulmuşa benziyor, çünkü Brahmagupta köklerden sadece birini bulabiliyormuş gibi bir intiba bırakmıştır. Mahavira en azından pozitif kökü bulmayı mutlaka biliyordu, Sridhara da öyle. Türk Harizmi ve İranlı Ömer Hayyam da pozitif kökü bulmayı biliyorlardı. Ömer Hayyam ayrıca üçüncü dereceden bir denklemin birden fazla kökü olabileceğini de biliyordu. 1000 yıllarında Araplar ax2n+bxn+c=0 denklemini ikinci dereceden bir denkleme indirgeyebiliyorlardı. İspanyol Abraham bar Hiyya-Ha-Nasi ya da Savasorda ikinci dereceden denklemlerin çözümünü Batı'da ilk kez yayımlayan kişi olarak bilinir (Liber Embadorum kitabında.) Viéte (1540-1603), geometrik yöntemler yerine cebirsel yöntemleri kullanan ilk Batılı matematikçi olmuştur. Al-Harazmi bunu çok daha önceden biliyordu. |