tualimforum.com
>
EĞİTİM ve ÖĞRETİM
>
Dersler/Ödevler
>
Matematik - Geometri
Homeomorfizma - Topolojik İzomorfizm
Kullanıcı ismi
Beni hatırla
Şifreniz
Kayıt ol
Yardım
Üye Listesi
Ajanda
Bugünki Mesajlar
Arama
Matematik - Geometri
Matematik ödevleri,Geometri ödevleri...
Forumları ara
Konu gösterimi
Mesaj gösterimi
Gelişmiş arama yap
Seçilene git...
Konu Bilgileri
Konu Başlığı
Homeomorfizma - Topolojik İzomorfizm
Konudaki Cevap Sayısı
0
Şuan Bu Konuyu Görüntüleyenler
Görüntülenme Sayısı
954
LinkBack
Seçenekler
21.08.09, 01:36
#
1
(
permalink
)
Kullanıcı Profili
SERDEM
S.Moderators
Kullanıcı Bilgileri
Üyelik tarihi: Mar 2008
Mesajlar: 7.687
Konular: 6910
Puan Grafiği
Rep Puanı:11076
Rep Gücü:20
RD:
Teşekkür
Ettiği Teşekkür: 47
464 Mesajına 935 Kere Teşekkür Edlidi
:
Homeomorfizma - Topolojik İzomorfizm
Homeomorfizma - Topolojik İzomorfizm
Bir kahve bardağının simide sürekli deformasyonu
Homeomorfizma veya topolojik eşyapı (topolojik izomorfizm), matematiksel alanda topolojinin incelediği temel konulardan biridir ve iki uzayın (mesela iki şeklin) parça koparmadan sürekli olarak birbirine dönüşümünü inceler. Kelime Yunanca homoios "benzer" ve morphē "şekil-şeklini bozmak" kelimelerinden türemiştir.
Aralarında homeomorfizma olan iki cisim homeomorfik olarak adlandırılır. Topolojik açıdan bunlar aynıdır. Mesela bir üçgeni bir çembere, bir çay bardağını, çay tabağına ya da kulplu bardağı simide homeomorf kılabiliriz.
Kabaca, topolojik cisim geometrik bir nesne ise, homeomorfizma nesnenin yeni şeklini sürekli esneyerek kaplar. Bu suretle bir kare ve çember birbirlerinin homeomorfudurlar, fakat bir küre ve ortası delik küre değildirler. Topoljistler arasında saplı bardaklarından kahvelerini içerken ve simitlerini yerken çıkmış bir espri olarak, simidin kahve fincanı şekline esneyip onu kaplayarak dönüşmesini, kahve fincanının sapını tutarken açıklayamadıklarını söylerler.
İki şekil üzerinde homeomorfizmayı şu şekilde açıklayabiliriz: A şeklinden B şekline yırtmadan, parça koparmadan geçebilmek için A'dan B'ye sürekli fonksiyona ihtiyaç vardır. Ve aynı şekilde B'den A'ya geçmemiz gerekmektedir. Bunun için de fonksiyonumuz tersinir olmalı ve tersi de sürekli olmalıdır.
Kısaca "f: A->B bir homeomorfizma ise f süreklidir, tersi vardır ve tersi de süreklidir" diyebiliriz.
Matematiksel Tanım
A ve B topolojik uzaylar olmak üzere, A 'dan B 'ye sürekli, birebir, örten ve tersi de sürekli bir gönderime homeomorfizma denir. Homeomorfizmalar, tüm topolojik uzaylar topluluğu üzerinde bir denklik bağıntısı tanımlar. Böylece oluşturulan denklik sınıflarının her birine homeomorfizma sınıfı denir.
Topolojide, verilen bir topolojik uzay topluluğu için homeomorfizma sınıflarını bulmak ve bu uzayları bu sınıflara göre sınıflandırmak temel problemlerden biridir. Örneğin, tüm 1 boyutlu çokkatlıların homeomorfizma sınıfları bilinmektedir: 1 boyutlu bağlantılı bir çokkatlı, ya (0,1) açık aralığına, ya [0,1] kapalı aralığına, ya (0,1] aralığına ya da çembere homeomorfiktir.
İki boyutlu çokkatlılara yüzey denir. Tıkız, bağlantılı bir yüzeyin homeomorfizma sınıfı, Euler sayısı ve yön verilebilir olup olmadığıyla belirlenir.
Daha yüksek boyutlu çokkatlılar için homeomorfizma sınıfı problemi bu kadar basitçe yanıtlanamaz.
--------------Tualimforum İmzam--------------
Aksini Belirtmediğim Takdirde Yazdığım Konular
ALINTIDIR
Liseler - Anadolu Liseleri - Fen Liseleri
Anaokulu - İlköğretim
Sınav Soruları ve Ders Notları
Tags
homeomorfizma
,
topolojik
,
İzomorfizm
«
önceki Konu
|
sonraki Konu
»
Konuyu Toplam 1 Üye okuyor.
(0 Kayıtlı üye ve 1 Misafir)
Seçenekler
Yazdırılabilir şekli göster
Sayfayı E-Mail olarak gönder
Yetkileriniz
You
may not
post new threads
You
may not
post replies
You
may not
post attachments
You
may not
edit your posts
BB code
is
Açık
Smileler
Açık
[IMG]
Kodları
Açık
HTML-Kodları
Kapalı
Trackbacks
are
Açık
Pingbacks
are
Açık
Refbacks
are
Açık
Forum Rules
Bütün Zaman Ayarları WEZ +3 olarak düzenlenmiştir. Şu Anki Saat:
06:30
.
-- English (US)
-- Tr
İletişim
-
www.tualimforum.com
-
Arşiv
-
Kullanım sözleşmesi
-
Yukarı git
Powered by vBulletin Version 3.8.7
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Search Engine Optimization by vBSEO 3.6.0 RC 2
LinkBack
LinkBack URL
About LinkBacks
Bookmark & Share
Digg this Thread!
Add Thread to del.icio.us
Bookmark in Technorati
Tweet this thread