tualimforum.com  

Geri git   tualimforum.com > EĞİTİM ve ÖĞRETİM > Dersler/Ödevler > Matematik - Geometri
Kayıt ol Yardım Üye Listesi Ajanda Bugünki Mesajlar

Matematik - Geometri Matematik ödevleri,Geometri ödevleri...


Konu Bilgileri
Konu Başlığı
Denklem ÇÖzme
Konudaki Cevap Sayısı
0
Şuan Bu Konuyu Görüntüleyenler
 
Görüntülenme Sayısı
1097

Yeni Konu aç  Cevapla
 
LinkBack Seçenekler
Alt 08.08.08, 16:38   #1 (permalink)
Kullanıcı Profili
S.Moderators
 
SERDEM - ait Kullanıcı Resmi (Avatar)
Kullanıcı Bilgileri
Üyelik tarihi: Mar 2008
Mesajlar: 7.687
Konular: 6910
Puan Grafiği
Rep Puanı:11076
Rep Gücü:20
RD:SERDEM has a reputation beyond reputeSERDEM has a reputation beyond reputeSERDEM has a reputation beyond reputeSERDEM has a reputation beyond reputeSERDEM has a reputation beyond reputeSERDEM has a reputation beyond reputeSERDEM has a reputation beyond reputeSERDEM has a reputation beyond reputeSERDEM has a reputation beyond reputeSERDEM has a reputation beyond reputeSERDEM has a reputation beyond repute
Teşekkür

Ettiği Teşekkür: 47
464 Mesajına 935 Kere Teşekkür Edlidi
:
Standart Denklem ÇÖzme

BİRİNCİ DERECEDEN BİR BİLİNMEYENLİ DENKLEMLER
A. TANIM

a ve b gerçel (reel) sayılar ve a ¹ 0 olmak üzere,

ax + b = 0 eşitliğine birinci dereceden bir bilinmeyenli denklem denir.

Bu denklemi sağlayan x değerlerine denklemin kökü, denklemin kökünün oluşturduğu kümeye denklemin çözüm kümesi denir.
B. EŞİTLİĞİN ÖZELLİKLERİ

1) a = b ise, a ± c = b ± c dir.

2) a = b ise, a . c = b . c dir.

3) a = b ise,

4) a = b ise, an = bn dir.

5) a = b ise,

6) (a = b ve b = c) ise, a = c dir.Ü

7) (a = b ve c = d) ise, a ± c = b ± d

8) (a = b ve c = d) ise, a . c = b . d dir.

9) (a = b ve c = d) ise,

10) a . b = 0 ise, (a = 0 veya b = 0) dır.

11) a . b ¹ 0 ise, (a ¹ 0 ve b ¹ 0) dır.

12) = 0 ise, (a = 0 ve b ¹ 0) dır.


C. ax + b = 0 DENKLEMİNİN ÇÖZÜM KÜMESİ

1. a ¹ 0 olmak üzere,
ax + b = 0 ise,

2. (a = 0 ve b = 0) ise, ax + b = 0 denklemini bütün sayılar sağlar. Buna göre, reel (gerçel) sayılarda çözüm kümesi IR dir.
3. (a = 0 ve b ¹ 0) ise, ax + b = 0 denklemini sağlayan hiçbir sayı yoktur.
Yani, Ç = Æ dir.

D. BİRİNCİ DERECEDEN İKİ BİLİNMEYENLİ DENKLEM SİSTEMİ

a, b, c Î IR, a ¹ 0 ve b ¹ 0 olmak üzere,

ax + by + c = 0 denklemine birinci dereceden iki bilinmeyenli denklem denir.

Bu denklem düzlemde bir doğru belirtir. Doğru üzerindeki bütün noktaların oluşturduğu ikililer denkle-min çözüm kümesidir.

Buna göre, ax + by + c = 0 denkleminin çözüm kümesi birçok ikiliden oluşur.

a, b, c Î IR olmak üzere,

ax + by + c = 0

denklemi her (x, y) Î IR2 için sağlanıyorsa

a = b = c = 0 dır.

Birden fazla iki bilinmeyenli denklemden oluşan sisteme birinci dereceden iki bilinmeyenli denklem sistemi denir.

Çözüm Kümesinin Bulunması

Birinci dereceden iki bilinmeyenli denklem sistemlerinin çözüm kümesi; yok etme yöntemi, yerine koyma yöntemi,
grafik
yöntemi, determinant yöntemi gibi yöntemlerden biri ile yapılır.

Biz burada üçünü vereceğiz.

a. Yok Etme Yöntemi: Değişkenlerden biri yok edilecek biçimde verilen denklem sistemi düzenlenir ve taraf tarafa toplanır.

Taraf tarafa toplandığında veya çıkarıldığında (ya da bir düzenlemeden sonra) değişkenlerden biri sadeleşiyorsa “Yok etme yöntemi” kolaylık sağlar.

b. Yerine Koyma Yöntemi: Verilen denklemlerin birinden, değişkenlerden biri çekilip diğer denklem-de yerine yazılarak sonuca gidilir.

Denklemlerin birinden, değişkenlerden biri kolayca çekilebiliyorsa, “Yerine koyma yöntemi” kolaylık sağlar.

c. Karşılaştırma Yöntemi: Verilen denklemlerin iki-sinden de aynı değişken çekilir. Denklemlerin diğer tarafları karşılaştırılır (eşitlenir).

Her iki denklemden de aynı değişken kolayca çekilebiliyorsa, “Karşılaştırma yöntemi” kolaylık sağlar.

Ü ax + by + c = 0

dx + ey + f = 0

denklem sistemini göz önüne alalım:

Bu iki denklemin her birinin düzlemde bir doğru belirttiği göz önüne alınırsa üç durum olduğu görülür.

Birinci durum:

ise, bu iki doğru tek bir noktada kesişir.

Verilen denklem sisteminin çözüm kümesi bir tek noktadan oluşur.

İkinci durum:

ise, bu iki doğru çakışıktır.

Doğru üzerindeki her nokta denklem sistemini sağlar.

Verilen denklem sisteminin çözüm kümesi sonsuz noktadan oluşur.

Üçüncü durum:

ise, bu iki doğru paraleldir.

Denklem sistemini sağlayan hiçbir nokta bulunamaz.

Verilen denklem sisteminin çözüm kümesi boş kümedir.
--------------Tualimforum İmzam--------------
Aksini Belirtmediğim Takdirde Yazdığım Konular ALINTIDIR



Liseler - Anadolu Liseleri - Fen Liseleri

Anaokulu - İlköğretim

Sınav Soruları ve Ders Notları
SERDEM isimli Üye şimdilik offline konumundadır   Alıntı ile Cevapla
Cevapla

Tags
cozme, denklem


Konuyu Toplam 1 Üye okuyor. (0 Kayıtlı üye ve 1 Misafir)
 

Yetkileriniz
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is Açık
Smileler Açık
[IMG] Kodları Açık
HTML-KodlarıKapalı
Trackbacks are Açık
Pingbacks are Açık
Refbacks are Açık


Benzer Konular
Konu Konuyu Başlatan Forum Cevaplar son Mesaj
Matematik Denklem Cözme SERDEM İlköğretim 0 13.12.09 16:31
Denklem Kurma , Cözümlü Örnekler , Denklem Kurma Problemleri SERDEM İlköğretim 0 13.12.09 16:29
3. SINIFLARA YETENEK ve ŞİFRE ÇÖZME SORULARI SERDEM İlköğretim 0 15.11.08 00:28
Denklem ( Türkan İldeniz ) Josephine Şairlerden Seçme Şiirler 0 01.09.08 11:10
Denklem Kurma Problemleri SERDEM Matematik - Geometri 0 08.08.08 17:20


Bütün Zaman Ayarları WEZ +3 olarak düzenlenmiştir. Şu Anki Saat: 21:58 .


Powered by vBulletin Version 3.8.7
Copyright ©2000 - 2025, Jelsoft Enterprises Ltd.
Search Engine Optimization by vBSEO 3.6.0 RC 2