tualimforum.com
>
EĞİTİM ve ÖĞRETİM
>
Dersler/Ödevler
>
Matematik - Geometri
Denklem ÇÖzme
Kullanıcı ismi
Beni hatırla
Şifreniz
Kayıt ol
Yardım
Üye Listesi
Ajanda
Bugünki Mesajlar
Arama
Matematik - Geometri
Matematik ödevleri,Geometri ödevleri...
Forumları ara
Konu gösterimi
Mesaj gösterimi
Gelişmiş arama yap
Seçilene git...
Konu Bilgileri
Konu Başlığı
Denklem ÇÖzme
Konudaki Cevap Sayısı
0
Şuan Bu Konuyu Görüntüleyenler
Görüntülenme Sayısı
1088
LinkBack
Seçenekler
08.08.08, 16:38
#
1
(
permalink
)
Kullanıcı Profili
SERDEM
S.Moderators
Kullanıcı Bilgileri
Üyelik tarihi: Mar 2008
Mesajlar: 7.687
Konular: 6910
Puan Grafiği
Rep Puanı:11076
Rep Gücü:20
RD:
Teşekkür
Ettiği Teşekkür: 47
464 Mesajına 935 Kere Teşekkür Edlidi
:
Denklem ÇÖzme
BİRİNCİ DERECEDEN BİR BİLİNMEYENLİ DENKLEMLER
A. TANIM
a ve b gerçel (reel) sayılar ve a ¹ 0 olmak üzere,
ax + b = 0 eşitliğine birinci dereceden bir bilinmeyenli denklem denir.
Bu denklemi sağlayan x değerlerine denklemin kökü, denklemin kökünün oluşturduğu kümeye denklemin çözüm kümesi denir.
B. EŞİTLİĞİN ÖZELLİKLERİ
1) a = b ise, a ± c = b ± c dir.
2) a = b ise, a . c = b . c dir.
3) a = b ise,
4) a = b ise, an = bn dir.
5) a = b ise,
6) (a = b ve b = c) ise, a = c dir.Ü
7) (a = b ve c = d) ise, a ± c = b ± d
8) (a = b ve c = d) ise, a . c = b . d dir.
9) (a = b ve c = d) ise,
10) a . b = 0 ise, (a = 0 veya b = 0) dır.
11) a . b ¹ 0 ise, (a ¹ 0 ve b ¹ 0) dır.
12) = 0 ise, (a = 0 ve b ¹ 0) dır.
C. ax + b = 0 DENKLEMİNİN ÇÖZÜM KÜMESİ
1. a ¹ 0 olmak üzere,
ax + b = 0 ise,
2. (a = 0 ve b = 0) ise, ax + b = 0 denklemini bütün sayılar sağlar. Buna göre, reel (gerçel) sayılarda çözüm kümesi IR dir.
3. (a = 0 ve b ¹ 0) ise, ax + b = 0 denklemini sağlayan hiçbir sayı yoktur.
Yani, Ç = Æ dir.
D. BİRİNCİ DERECEDEN İKİ BİLİNMEYENLİ DENKLEM SİSTEMİ
a, b, c Î IR, a ¹ 0 ve b ¹ 0 olmak üzere,
ax + by + c = 0 denklemine birinci dereceden iki bilinmeyenli denklem denir.
Bu denklem düzlemde bir doğru belirtir. Doğru üzerindeki bütün noktaların oluşturduğu ikililer denkle-min çözüm kümesidir.
Buna göre, ax + by + c = 0 denkleminin çözüm kümesi birçok ikiliden oluşur.
a, b, c Î IR olmak üzere,
ax + by + c = 0
denklemi her (x, y) Î IR2 için sağlanıyorsa
a = b = c = 0 dır.
Birden fazla iki bilinmeyenli denklemden oluşan sisteme birinci dereceden iki bilinmeyenli denklem sistemi denir.
Çözüm Kümesinin Bulunması
Birinci dereceden iki bilinmeyenli denklem sistemlerinin çözüm kümesi; yok etme yöntemi, yerine koyma yöntemi,
grafik
yöntemi, determinant yöntemi gibi yöntemlerden biri ile yapılır.
Biz burada üçünü vereceğiz.
a. Yok Etme Yöntemi: Değişkenlerden biri yok edilecek biçimde verilen denklem sistemi düzenlenir ve taraf tarafa toplanır.
Taraf tarafa toplandığında veya çıkarıldığında (ya da bir düzenlemeden sonra) değişkenlerden biri sadeleşiyorsa “Yok etme yöntemi” kolaylık sağlar.
b. Yerine Koyma Yöntemi: Verilen denklemlerin birinden, değişkenlerden biri çekilip diğer denklem-de yerine yazılarak sonuca gidilir.
Denklemlerin birinden, değişkenlerden biri kolayca çekilebiliyorsa, “Yerine koyma yöntemi” kolaylık sağlar.
c. Karşılaştırma Yöntemi: Verilen denklemlerin iki-sinden de aynı değişken çekilir. Denklemlerin diğer tarafları karşılaştırılır (eşitlenir).
Her iki denklemden de aynı değişken kolayca çekilebiliyorsa, “Karşılaştırma yöntemi” kolaylık sağlar.
Ü ax + by + c = 0
dx + ey + f = 0
denklem sistemini göz önüne alalım:
Bu iki denklemin her birinin düzlemde bir doğru belirttiği göz önüne alınırsa üç durum olduğu görülür.
Birinci durum:
ise, bu iki doğru tek bir noktada kesişir.
Verilen denklem sisteminin çözüm kümesi bir tek noktadan oluşur.
İkinci durum:
ise, bu iki doğru çakışıktır.
Doğru üzerindeki her nokta denklem sistemini sağlar.
Verilen denklem sisteminin çözüm kümesi sonsuz noktadan oluşur.
Üçüncü durum:
ise, bu iki doğru paraleldir.
Denklem sistemini sağlayan hiçbir nokta bulunamaz.
Verilen denklem sisteminin çözüm kümesi boş kümedir.
--------------Tualimforum İmzam--------------
Aksini Belirtmediğim Takdirde Yazdığım Konular
ALINTIDIR
Liseler - Anadolu Liseleri - Fen Liseleri
Anaokulu - İlköğretim
Sınav Soruları ve Ders Notları
Tags
cozme
,
denklem
«
önceki Konu
|
sonraki Konu
»
Konuyu Toplam 1 Üye okuyor.
(0 Kayıtlı üye ve 1 Misafir)
Seçenekler
Yazdırılabilir şekli göster
Sayfayı E-Mail olarak gönder
Yetkileriniz
You
may not
post new threads
You
may not
post replies
You
may not
post attachments
You
may not
edit your posts
BB code
is
Açık
Smileler
Açık
[IMG]
Kodları
Açık
HTML-Kodları
Kapalı
Trackbacks
are
Açık
Pingbacks
are
Açık
Refbacks
are
Açık
Forum Rules
Benzer Konular
Konu
Konuyu Başlatan
Forum
Cevaplar
son Mesaj
Matematik Denklem Cözme
SERDEM
İlköğretim
0
13.12.09
16:31
Denklem Kurma , Cözümlü Örnekler , Denklem Kurma Problemleri
SERDEM
İlköğretim
0
13.12.09
16:29
3. SINIFLARA YETENEK ve ŞİFRE ÇÖZME SORULARI
SERDEM
İlköğretim
0
15.11.08
00:28
Denklem ( Türkan İldeniz )
Josephine
Şairlerden Seçme Şiirler
0
01.09.08
11:10
Denklem Kurma Problemleri
SERDEM
Matematik - Geometri
0
08.08.08
17:20
Bütün Zaman Ayarları WEZ +3 olarak düzenlenmiştir. Şu Anki Saat:
20:20
.
-- English (US)
-- Tr
İletişim
-
www.tualimforum.com
-
Arşiv
-
Kullanım sözleşmesi
-
Yukarı git
Powered by vBulletin Version 3.8.7
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Search Engine Optimization by vBSEO 3.6.0 RC 2
LinkBack
LinkBack URL
About LinkBacks
Bookmark & Share
Digg this Thread!
Add Thread to del.icio.us
Bookmark in Technorati
Tweet this thread