tualimforum.com
>
EĞİTİM ve ÖĞRETİM
>
Dersler/Ödevler
>
Matematik - Geometri
Mutlak Değer
Kullanıcı ismi
Beni hatırla
Şifreniz
Kayıt ol
Yardım
Üye Listesi
Ajanda
Bugünki Mesajlar
Arama
Matematik - Geometri
Matematik ödevleri,Geometri ödevleri...
Forumları ara
Konu gösterimi
Mesaj gösterimi
Gelişmiş arama yap
Seçilene git...
Konu Bilgileri
Konu Başlığı
Mutlak Değer
Konudaki Cevap Sayısı
0
Şuan Bu Konuyu Görüntüleyenler
Görüntülenme Sayısı
1150
LinkBack
Seçenekler
08.08.08, 15:42
#
1
(
permalink
)
Kullanıcı Profili
SERDEM
S.Moderators
Kullanıcı Bilgileri
Üyelik tarihi: Mar 2008
Mesajlar: 7.687
Konular: 6910
Puan Grafiği
Rep Puanı:11076
Rep Gücü:20
RD:
Teşekkür
Ettiği Teşekkür: 47
464 Mesajına 935 Kere Teşekkür Edlidi
:
Mutlak Değer
Tanım:
Sayı doğrusu üzerinde x sayısının sıfıra olan uzaklığına x in mutlak değeri denir ve │x│ ile gösterilir.
x , R nin elemanıdır ve
│x│ ={x, x > 0 ise
{-x,x < 0 ise
şeklinde tanımlanır.
│f(x)│ ={f(x),f(x) > 0 ise
{-f(x),f(x)< 0 ise
Örnek:
x =-3 için │x-5│ - │x+2│ ifadesinin eşiti kaçtır?
Çözüm:
│-3-5│ - │-3+2 │ = 8-1=7
Örnek:
a<b<0olduğuna göre,
│a+b│ - │a-b │ ifadesinin eşiti nedir?
Çözüm:
│a+b│ - │a-b│ = -(a+b) -[ -(a-b) ]
=-a-b+a-b
=-2b
ÖZELLİKLERİ
a,b elemandır R için
1) │a│≥ 0 dır
2) │a │ = │ -a│
3) - │ a│≤a ≤│a│
4) │a.b│ = │a│.│b │
5) b≠ 0 için │a/b │= │a│ / │b │
6) │IaI-IbI│≤│a+b│ < │a│ + │b │ (üçgen eşitsizliği)
7) n elemanıdır Z+ olmak üzere │an │ = │a│n
8) a> 0,x elemanıdır R ve │x│< a ise -a <x <a
9) a>0,x elemanıdır R,│x│≥ a ise x≥ a veya x ≤ -a dır.
10)I-aI=IaI, Ia-bI=Ib-aI
11)I f(x) I = a ise f(x )= a veya f(x) = -a
12)I f(x) I < a ise -a< f(x) < a
13)I f(x) I > a ise f(x) > a U -f(x) > a
İSPATLAR
Öz.1)a = 0 ise IaI = I0I = 0
a > 0 ise IaI = a >0
a < 0 ise IaI = -a >0 dır.
O halde IaI > 0 dır.
Öz.2)a ve -a sayılarının 0 dan uzaklıkları eşit olduğundan IaI=I-aI dır.
Öz.6) a elemanıdır R için -IaI ≤ a ≤ IaI
b elemanıdır R için -IbI ≤ b≤ IbI
+
-IaI-IbI≤a+b≤IaI+IbI
O halde Ia+bI < IaI+IbI dir.
Öz.7) a,b elemanıdır R için Ia.bI=IaI.IbI idi.
Ia nI=Ia.a.a...aI=IaI.IaI.IaI...IaI=IaIn dir.
(n tane) ( n tane )
Öz.3)a sayısı için a<0,a=0,a>0 durumlarından biri vardır.
a)a < 0 ise IaI = -a dır.
IaI > 0 olduğundan -IaI < 0 dır.
-IaI= a <0 < IaI ise -IaI < a < IaI dır.
b)a=0 ise IaI = I0I = 0 ve -Ia I= 0 olacağından –IaI < a < IaI dır.
c)a > 0 ise IaI = a ve -IaI < 0 dır.
-IaI≤ 0≤ IaI = a ise -IaI < a < IaI dır.
MUTLAK DEĞERLİ DENKLEMLER
Soru:
I3x-7I = 5 denklemini çözünüz.
Çözüm:
I3x-7I = 5 ise; 3x-7 = 5 veya 3x-7 = -5 olur.
1- 3x-7 = 5 2- 3x-7=-5
3x = 12 3x = 2
x = 4 x = 2/3
Ç={4,2/3}
Soru:
Ix-7I = 7-x eşitliğini sağlayan kaç tane doğal sayı vardır?
Çözüm
: Ix-7I = 7-x ise
x-7 < 0 ise x < 7olup x doğal sayıları 0,1,2,3,4,5,6,7 dir.
O halde 8 tane doğal sayı vardır.
Soru:
= 2 denkleminin çözüm kümesi nedir ?
Çözüm:
= 2
5-2x/3=2 veya 5-2x/3= -2
5-2x = 6 veya 5-2x = -6
x = -1/2 veya x = 11/2
Ç ={-1/2,11/2}
Soru:
I 4+I2x-3I I = 5 denklemini sağlayan x reel sayılarının toplamı nedir?
Çözüm:
I 4+I2x-3I I = 5
4+I2x-3I = 5 veya 4+I2x-3I = -5
I2x-3I = 1 veya I2x-3I = -9
2x-3 = 1 veya 2x-3 = -1 Çözüm:O
x = 2 x = 1
O halde x+x = 2+1 = 3 olur.
Uyarı
:Hiçbir reel sayının mutlak değeri negatif olamayacağından, denklemin çözüm kümesi boş küme () olur.
MUTLAK DEĞERLİ EŞİTSİZLİKLER
Soru:
Ix-7I < 3 eşitsizliğinin çözüm kümesini bulunuz.
Çözüm:
Ix-7I < 3 = -3 < x-7 < 3 = -3+7 < x < 3+7
=4<x<10 Ç={5,6,7,8,9}
Soru:
I 3x+2 I+9 > 2 eşitsizliğini çözünüz.
Çözüm:
I 3x+2I+9 > 2 = I 3x+2I > -7
***Bu eşitsizlik x in her değeri için sağlanır.Bu nedenle; Çözüm kümesi R dir.
Soru:
I Ix-5I-2 I < 3 eşitsizliğini sağlayan kaç tane tamsayı vardır?
Çözüm:
I Ix-5I-2 I < 3 = -3 < Ix-5I -2 < 3
= -1 < Ix-5I < 5
Ix-5I >-1 eşitsizliği daima doğrudur.
Ix-5I < 5 = -5 < x-5 < 5
= 0 < x < 10
Bu aradaki tamsayılar 1,2,3,4,5,6,7,8,9 olup 9 tamsayı vardır.
Soru:
I 2x-7 I < 2 eşitsizliğini sağlayan kaç tane tamsayı vardır?
Çözüm:
I 2x-7 I < 2 = -2 < 2x-7 < 2
= -2+7 < 2x < 2+7
= 5 < 2x < 9
= 5/2 < x < 9/2
Bu durumda çözüm kümesi {3,4} olur.
Soru:
I 3x+1 I > -8 denkleminin çözüm kümesini bulunuz.
Çözüm
: x elemanıdır R için I 3x+1 I > 0 olduğundan
I 3x+1 I > -8 eşitsizliği daima doğrudur. Buna göre denklemin çözüm kümesi Reel sayılar kümesidir.
Soru:
I 3-3x I < 9 eşitsizliğinin R deki çözüm kümesi nedir?
a) 0<x<2 b) -2<x<4 c) -1<x<0 d) 0<x<2 e) 2<x<4
Çözüm
: I 3-3x I<9 = -9 < 3-3x < 9
= -9+3 < 3x < 9+3
= -6 < 3x < 12
= -6/3 < x < 12/3
= -2 < x < 4 ( Cevap B dir.)
Soru:
1 < Ix-2I < 3 eşitsizliğini sağlayan kaç tane tamsayı vardır?
Çözüm
: 1 < Ix-2I < 3 = 1 < x-2 < 3
= 1+2 < x < 3+2
= 3 < x < 5
Eşitsizliği oluşturan tamsayılar = {3,4,5} tir.
MUTLAK DEĞER İLE İLGİLİ KARIŞIK
ALIŞTIRMALAR
Soru 3:
|x| 2 => -2<x<2 dir.
Soru 4:
|x| 2 => x > 2 veya x < -2 dir.
Soru 5:
|x-1| = 3 => x-1=3 veya x - 1 = -3
x = 4 veya x = -2 dir.
Soru 6
: a<b<0<c olmak üzere;
a +c + b-c+c - a
= -a + c - (b - c) + c – a
= -a + c-b + c + c- a
= 3c - 2a - b dir.
Soru 7
:x-5= 3 => x - 5 = 3 veya x -5 = -3 tür.
x = 8 veya x = 2
x = 8 veya x =- 8 veya
x = 2 veya x =- 2 dir.
Ç.K. = {-8, -2, 2, 8} dir.
Soru 8:
||x-l| + 4| = 6=>x-1 + 4 = 6 veya
x-1 + 4 = -6 lx-1l = 2 veya lx-1l = -10 olur.
x-1 = - 10 olamayacağından kök yoktur.
x-1 = 2 ise x - 1 = 2 veya x - 1 = -2 x = 3 veya x = -1 dir.
Ç.K = {-1,3}
Soru 9:
I 3x-1 I+5 = 0 denkleminin çözüm kümesi nedir?
Çözüm
: I 3x-1 I+5 = 0 ise I 3x-1 I = -5 olur.
*** a elemanıdır R için IaI > 0 dır.
Bu nedenle sorunun çözüm kümesi O dir.
Soru 10
: I Ix-4I -5 I = 10 denklemini sağlayan x değerlerini bulunuz.
Çözüm
: I Ix-4I –5 I = 10
Ix-4I-5 =10 veya Ix-4I-5 = -10
Ix-4I = 5 veya Ix-4I = -5
Ç = {O}
x-4 = 15 veya x-4 = -15 x = 19 veya x = -14
Soru11
: I Ix-1I+5 I = 8 denkleminin kökleri toplamı kaçtır?
a) -2 b) 0 c) 2 d) 4 e)14
Çözüm:
I Ix-1I+5 I = 8
I Ix-1I+5 I = 8 veya I Ix-1I+5 = -8
Ix-1I = 3 veya Ix-1I = -13
Ç = {O}
x-1 = 3 veya x-1 = -3
x = 4 veya x = -2
x+x = 4+(-2) = 2 ( Cevap C dir.)
Soru 12
: I Ix-2I-3 I = 7 denkleminin kökleri toplamı kaçtır?
a) 2 b) 4 c) 8 d) 10 e) 12
Çözüm:
I Ix-2I-3 I = 7
Ix-2I-3 = 7 veya Ix-2I-3 = -7
Ix-2I = 10 veya Ix-2I = -4
Ç = {O}
x-2 = 10 veya x-2 = -10
x = 12 veya x = -8
x+x = 12-(-8) = 4 ( Cevap B dir.)
Soru 13:
I 7-(3-I-5I) I işleminin sonucu nedir?
A) 4 B) 5 C) 6 D) 7 E) 9
Çözüm:
I 7-(3-I-5I) I = I 7-[3- -(-5)] I
= I 7-[3-5] I
= I 7-(-2) I
= I 7+2 I
= I 9 I = 9
Soru 14:
I Ix-2I-5 I = 1 denklemini sağlayan x tam sayıları nelerdir?
a) 3,6,-3,-6 b) 4,8,-3,-8 c) 7,9,5 d) 8,-4,6,-2 e) 2,-2
Çözüm:
I Ix-2I-5 I
Ix-2I-5 = 1 veya Ix-2I-5 = -1
Ix-2I = 6 veya Ix-2I = 4
x-2 = 6 veya x-2 = -6 x-2 = 4 veya x-2 = -4
x = 8 x = -4 x = 6 x = -2
Soru 15
: Ix+2I < 4 eşitsizliğini sağlayan kaç tane tamsayı vardır?
a) 13 b) 9 c) 8 d) 7 e) 6 (ÖSS 1999)
Çözüm:
Ix+2I < 4 = -4 < x + 2 <4
= -6 < x < 2
Eşitsizliği oluşturan tamsayılar –6,-5,-4,-3,-2,-1,0,1,2 dir. ( Cevap A dır.)
Soru 16
: IxI < 6 olduğuna göre,x-2y+2 = 0 koşulunu sağlayan kaç tane y tamsayısı vardır?
a) 7 b) 6 c) 5 d) 4 e) 3 (ÖSS 2000)
Çözüm:
IxI 0 dan küçük olmayacağından IxI 0,1,2,3,4,5,6 olabilir.
x-2y+2 = 0 koşulunu çift sayılar oluşturur.Bunlar 0,2,4,6 dır.Bu sayılar y yi tamsayı yapar. ( Cevap D dir.)
Soru 17:
f(x) = 12 fonksiyonunun en büyük değeri
Ix-1I+Ix+3I
nedir?
a) 2 b) 3 c) 4 d) 5 e) 6
Çözüm:
x elemanıdır [-3,1] için f(x) en büyük olur. X = -3 ise,
f(-3) = 12 = 12/4 =3 tür.
I-3-1I+I-3+3I
( Cevap B dir.)
Soru 18
:x-1 6 olduğuna göre, x - 2y + 2 = O koşulunu sağlayan kaç tane y tamsayısı vardır?
A) 7 B) 6 C) 5 D) 4 E) 3 (2000-ÖSS)
ÇÖZÜM
x-2y + 2 = 0 => x = 2y- 2 dir.
x < 6 => 2y - 2 6 => -6 2y - 2 < 6 dır.
Buradan, -4 < 2y < 8 => -2 < y < 4 bulunur.
Bu koşulu sağlayan y tamsayıları -2, -1, 0, 1, 2, 3, 4 olup 7 tanedir.
Cevap: A'dır.
Soru 19:
x+24 eşitsizliğini sağlayan kaç tane tamsayı vardır?
A) 13 B) 9 C) 8 D) 7 E) 6 (1999-ÖSS)
ÇÖZÜM
x+24 ise < 4 ise -4 < x + 2 < 4
-4-2<x+2-2<4-2
-6 < x < 2
x = -6, -5, -4, -3, -2, -1, O, 1, 2 olup 9 tane tamsayı değeri vardır.
Cevap: B'dir.
Soru 20
: x < 0 olmak üzere x-|x-8| - 8 ifadesi aşağıdakilerden hangisine eşittir?
A)16 B)-2x C)-4x D)-2x+16 E)-4x+16 (1999-ÖSS)
ÇÖZÜM
x-|x-8| - 8 = ?
x-8| = -(x-8) = -x+8
(-)
= x-(-x+8) - 8 |2x-8|-8
(-)
= - (2x - 8) - 8 = -2x + 8 - 8 = -2x
Cevap: B'dir.
Soru22:
|x-4| + |x| = 8 denklemini sağlayan x değerlerinin toplamı kaçtır?
A) 2 B) 4 C) 5 D) 6 E) 10 (2001-ÖSS)
ÇÖZÜM
Mutlak değerin içini 0 yapan değerler x = 4 ve x = 0 dır. x < 0 için, -x + 4-x = 8 olur.
-2x = 4 => x = - 2 dir.
0 < x < 4 için, -x + 4 + x = 8 olur.
4 = 8 olduğundan bu aralıkta sağlayan x değeri yoktur. x > 4 için, x - 4 + x = 8 olur.
2x = 12 => x = 6 dır.
x değerleri toplamı -2 + 6 = 4 olur.
Cevap: B'dir.
Soru 23:
x < 0 < y olduğuna göre
3. |x-y|
|y+|x| |
y+ işleminin sonucu aşağıdakilerden hangisidir?
A)-3x B)-3y C) 3 (x + y) D) - 3 E) 3 (1995-ÖSS)
ÇÖZÜM
3 |x - y| ifadesinde (x - y) < 0 olduğundan
3 |x - y| = - 3 (x - y) olur.
Benzer şekilde x<0 => |x| = - x olur.
| y + |x| | = |y-x| = y-x
+
3(x-y) = -3(x-y) =3
y-x -(x-y)
Cevap: E'dir.
--------------Tualimforum İmzam--------------
Aksini Belirtmediğim Takdirde Yazdığım Konular
ALINTIDIR
Liseler - Anadolu Liseleri - Fen Liseleri
Anaokulu - İlköğretim
Sınav Soruları ve Ders Notları
Tags
deger
,
mutlak
«
önceki Konu
|
sonraki Konu
»
Konuyu Toplam 1 Üye okuyor.
(0 Kayıtlı üye ve 1 Misafir)
Seçenekler
Yazdırılabilir şekli göster
Sayfayı E-Mail olarak gönder
Yetkileriniz
You
may not
post new threads
You
may not
post replies
You
may not
post attachments
You
may not
edit your posts
BB code
is
Açık
Smileler
Açık
[IMG]
Kodları
Açık
HTML-Kodları
Kapalı
Trackbacks
are
Açık
Pingbacks
are
Açık
Refbacks
are
Açık
Forum Rules
Benzer Konular
Konu
Konuyu Başlatan
Forum
Cevaplar
son Mesaj
Rüyada Değer Görmek - Rüyada Değer Görmek Açıklaması ve Yorumu - Değer Rüya Tabiri
Tarot
A-B-C-D-E-F-G ile Başlayan Rüya Tabirleri
0
04.03.13
02:34
Rüyada Değer Verilmek Görmek - Rüyada Değer Verilmek Görmek Açıklaması ve Yorumu
Tarot
A-B-C-D-E-F-G ile Başlayan Rüya Tabirleri
0
04.03.13
02:31
Mehmet Emin Değer İlköğretim Okulu Kızıltepe Mardin - Kızıltepe Mehmet Emin Değer
Pelince
Anaokulu - İlköğretim
0
25.07.11
20:12
Mutlak Değer - Mutlak Değer Nedir
SERDEM
Matematik - Geometri
0
21.08.09
01:13
Mutlak Değer ve Özellikleri
SERDEM
Matematik - Geometri
0
08.08.08
17:16
Bütün Zaman Ayarları WEZ +3 olarak düzenlenmiştir. Şu Anki Saat:
06:16
.
-- English (US)
-- Tr
İletişim
-
www.tualimforum.com
-
Arşiv
-
Kullanım sözleşmesi
-
Yukarı git
Powered by vBulletin Version 3.8.7
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Search Engine Optimization by vBSEO 3.6.0 RC 2
LinkBack
LinkBack URL
About LinkBacks
Bookmark & Share
Digg this Thread!
Add Thread to del.icio.us
Bookmark in Technorati
Tweet this thread