|
Kayıt ol | Yardım | Üye Listesi | Ajanda | Bugünki Mesajlar | Arama |
Elektronik-Bilgisayar Elektronik ödevleri,Bilgisayar ödevleri... |
| LinkBack | Seçenekler |
19.07.08, 22:47 | #2 (permalink) |
Delta Üye Üyelik tarihi: Jan 2008 Nerden: SaMSuN
Mesajlar: 776
Konular: 146 Rep Puanı:1997 Rep Gücü:0 RD: Ettiği Teşekkür: 0 17 Mesajına 80 Kere Teşekkür Edlidi : | 10 - Transistör : Tansistörler PNP ve NPN transistörler olarak iki türe ayrilirlar. NPN transistörler N, P ve N yari iletken maddelerin birlesmesinden, PNP transistörler ise P, N ve P yari iletken maddelerinin birlesmesinden meydana gelmislerdir. Ortada kalan yari iletken madde digerlerine göre çok incedir. Transistörde her yali iletken maddeden disari bir uç çikartilmistir. Bu uçlara "Kollektör, Beyz ve Emiter" isimlerini veriyoruz. Transistör beyz ve emiter uçlarina verilen küçük çaptaki akimlarla kollektör ile emiter uçlari arasindan geçen akimlari kontrol ederler. Beyz ile emiter arasina verilen akimin yaklasik %1 'i beyz üzerinden geri kalani ise kollektör üzerinden devresini tamamlar. Transistörler genel olarak yükseltme islemi yaparlar. Transistörlerin katalog degerlerinde bu yükseltme kat sayilari bulunmaktadir. Bu yükseltme katsayisinin birimi ise "Beta" 'dir. Simdide NPN ve PNP tipi transistörleri ayrica inceleyelim. a) - NPN Tipi Transistör : NPN tipi transistörler N, P ve N tipi yari iletkenlerinin birlesmesinden oluşmuştur. Sekilde görüldügü gibi 1 nolu kaynagin (-) kutbundaki elektronlar emiterdeki elektronlari beyze dogru iter ve bu elektronlarin yakalasik %1 'i beyz üzerinden 1 nolu kaynagin (+) kutbuna, geri kalani ise kollektör üzerinden 2 nolu kaynagin (+) kutbuna dogru hareket ederler. Beyz ile emiter arasindan dolasan akim çok küçük, kollektör ile emiter arasindan dolasan akim ise büyüktür. Alt tarafta NPN tipi transistörün sembolü ve iç yapisi görülmektedir. b) - PNP Tipi Transistör : PNP tipi transistörler P, N ve P tipi yari iletkenlerinin birlesmesinden meydana gelmistir. Sekilde görüldügü gibi 1 nolu kaynagin (+) kutbundaki oyuklar emiterdeki oyuklari beyze dogru iter ve bu oyuklarin yakalasik %1 'i beyz üzerinden 1 nolu kaynagin (-) kutbuna, geri kalani ise kollektör üzerinden 2 nolu kaynagin (-) kutbuna dogru hareket ederler. Beyz ile emiter arasindan dolasan akim çok küçük, kollektör ile emiter arasindan dolasan akim ise büyüktür.Alt tarafta PNP tipi transistörün sembolü ve iç yapisi görülmektedir. 11 - Foto Transistör : Foto transistörün normal transistörden tek farki, kollektör ile emiter arasindan geçen akimi beyz ile degilde, beyz ile kollektörün birlesim yüzeyine düsen mor ötesi isikla kontrol ediliyor olmasidir. Foto transistör devrede genelde beyz ucu bosta olrak kullanilir. Bu durumda üzerine isik düstügünde tem iletimde düsmediginde ise tam yalitimdadir. Foto transistörün kazanci beta kadar oldugu için foto diyotlardan daha avantajlidir. Alt tarafta foto transistörün sembolü görülmektedir. 12 - Tristör : Tristör mantik olarak yandaki sekildeki gibi iki transistörün birbirine baglandigi gibidir. Tristörün anot, katot ve gate olmak üzere üç ucu bulunmaktadir. Gate ucu tetikleme ucudur. Yani anot ile katot üzerinde bir gerilim varken (Anot (+), katot (-) olmak sarti ile) gate ile katot uclari arasina bir anlik (Gate (+), katot (-) olmak sarti ile) akim uygulanip çekildiginde tristörün anot ile katot uçlari arasi iletime geçer. Anot ile katot arasindaki gerilim "Tutma Gerilimi" 'nin altina düsmedigi sürece tristör iletimde kalir. Tristörü yalitima sokmak için anot ile katot arasindaki akim kesilir veya anat ile katot uclari bir anlik kisa devre yapilir. Veya da gate ile katot arasina ters polarma uygulanir. Yani gate ucuna negatif gerilim uygulanir. 13 - Diyak : Diyak çift yönde de ayni görevi gören bir zener diyot gibi çalisir. Diyakin üzerine uygulanan gerilim diyak geriliminin altinda iken diyak yalitimdadir. Üzerinden sadece sizinti akimi geçer. Üzerine ukgulanan gerilim diyak geriliminin üstüne çiktiginda ise siyak iletime geçer. Fakat iletime geçer geçmez diyakin uçlarindaki gerilimde bir düsüs görülür. Bu düsüs degeri diyak geriliminin yaklasik %20 'si kadardir. Diyakin üzerine uygulanan gerilim diyak geriliminin altina da düsse diyak yine de iletimde kalir. Fakat diyaka uygulanan gerilim düsüs anindan sonraki gerilim seviyesinin altina düsürüldügünde diyak yalitima geçer. Diyak iki yöndeki uygulanan polarmalarda da ayni tepkiyi verecektir. Diyakin bu özelliklerinin olma sebebi alternatif akimda kullanilabilmesidir. 14 - Triyak : Triyaklar da tristörlerin alternatif akimda çalisabilen türleridir. Triyakin olusumunda birbirne ters yönde bagli iki adet tristör bulunmaktadir. Alt tarafta bu birlesim görülmektedir. Herhangi bir alternatif akim devresindeki bir triyakin A1 ucuna (+) A2 ucuna da (-) yönde akim geldiginde birinci tristör, tam tersi durumda ise ikinci tristör devreye girecektir. Bu sayede triyak alternetif akimin iki yönünde de iletime geçmis olur. Triyak yüksek güçlü ve alternatif akim devrelerinde güç kontrol elemani olarak kullanilir. 15 - JFet Transistör : Jfet transistörler normal transistörlerle ayni mantikta çalisirlar. Üç adet uca sahiptir. Bunlar Kapi (G)(normal transistörün beyzi), oyuk (D)(normal transistörün kollektörü) ve kaynak (S) 'dir. Normal transistörle jfet transistör arasindaki tek fark, normal transistörün kollektör emiter arasindaki akimin, beyzinden verilen akimla kontrol edilmesi, jfet transistörün ise geytinden verilen gerilimle kontrol edilmesidir. Yani jfetler gate ucundan hiç bir akim çekmezler. Jfet'in en önemli özelligide budur. Bu özellik içerisinde çok sayida transistör bulunduran entegrelerde isinma ve akim yönünden büyük bir avantaj saglar. Normal transistörlerin NPN ve PNP çesitleri oldugu gibi jfet transistörlerinde N kanal ve P kanal olarak çesitleri bulunmaktadir. Fakat genel olarak en çok N kanal jfetler kullanilir. Asagida jfetin iç yapisi ve sembolü görülmektedir. a) - N Kanal JFet Transistör : Alttaki grafikte görüldügü gibi n kanal jfet transistörler iki adet P ve bir adette N maddesinin birlesiminden meydana gelmistir. Fetin gate ucuna uygulanan gerilim ile D ve S uclari arasindaki direnç degeri kontrol edilir. Gate ucu 0V tutuldugunda, yani S ucuna birlestirildiginde P ve N maddeleri arasindaki nötr bölge genislemeye baslar. Bu durumda D ve S uclari arasindan yüksek bir akim akmaktadir. D ve S uclari arasina uygulanan gerilim seviyesi arttirildigi taktirde ise bu nötr bölge daha da genislemeye baslar ve akim doyum degerinde sabit kalir. Gate ucuna eksi degerde bir gerilim uygulanmasi durumunda ise nötr bölge daralir. Akim seviyesi de gate ucuna uygulanan gerilim seviyesine bagli olarak düsmeye baslar. Bu sayede D ve S uçlarindaki direnç degeri yükselir. b) - P Kanal JFet Transistör : P kanal fetlerin çalisma sistemide N kanal fetlerle aynidir. Tek farki polarizasyon yönünün ve P N maddelerinin yerlerinin ters olmasidir. Yani gate ucuna pozitif yönde polarizasyon verdigimizde D ve S uclari arasindaki direnç artar, akim düser. Gate ucu 0V iken ise akim doyumdadir. 16 - Mosfet : Mofetlerde fetler gibi N kanal ve P kanal olarak ikiye ayrilirlar. Mosfetler Asagidaki sekilde görüldügü gibi büyük bir gövde olan P maddesi (SS) oluk ve kaynak kutuplarina bagli iki adet N maddesi. Ve yine kanal bölgesini olusturan bir N maddesi daha. Birde kanal ile arasinda silisyumdioksit (SiO2) maddesi bulunan kapi konnektörü bulunmaktadir. Bu madde n kanal ile kapi arasinda iletimin olmamasini saglar. P maddesinden olusan gövde bazi mofetlerde içten S kutbuna baglanmis, bazi mosfetlerde de ayri bir uc olarak disari çikarilmistir. Mosfetler akim kontrolü fetlerden biraz farklidir. Mosfetler bazi özelliklerine göre ikiye ayrilirlar, bunlar ;"Deplesyon (Depletion)" ve "Enhensment" tipi mosfetlerdir. Bu iki tip mosfeti simdi ayri ayri inceleyelim. a) - Deplesyon : Yandaki garafikten de anlasilacagi gibi mosfetin gate kutbuna 0V verildiginde (yani S kutbu ile birlestirildiginde) S ve D kutuplari arasindan fetlerdeki gibi bir akim akmaya baslar. Gate kutbuna negatif yönde yani -1V uygulandiginda ise gate kutbundaki elektronlar kanaldaki elektronlari iter ve p tipi maddeden olusan gövdedeki oyuklarida çeker. Bu itme ve çekme olaylarindan dolayi kanal ile gövdedeki elektron ve oyuklar birleserek nötr bölge olustururlar. Gate 'e uygulanan negatif gerilim artirildiginda ise nötr bölge dahada genisler ve akimin geçmesine engel olur. Gate kutbuna pozitif yönde gerilim uygulandiginda gate kutbundaki oyuklar, gövdedeki oyuklari iter, kanaldaki elektronlari ise çeker fakat aradki silisyumdioksit madde nedeniyle gate kutbundaki oyuklarla elektrinlar birlesemez. Bu sayede kanal genisler ve geçen akim daha da artar. Iste bu gate kutbunan uygulanan pozitif gerilimle akimin artirilmasina "Enhensment", negatif gerilim uygulayarak akim düsürülmesinede "Deplesyon" (Depletion) diyoruz. Bu bölümde Deplesyon tipi mosfetlerin N kanal olan türünü açikladik. P kanal olan tipi N kanalin, polarma ve yariiletkenlerin yerleri bakimindan tam tersidir. b) - Enhensment : Enhensment tipi mosfetleri, Deplesyon tipi mosfetlerden ayiran en önemli özellik yantarafta da görüldügü gibi N tipi kanalin bulunmamasidir. Bu kanalin bulunmamasi nedeni ile gate kutbuna 0V uygulandiginda S ile D uçlari arasindan hiç bir akim geçmez. |
19.07.08, 22:56 | #3 (permalink) |
Delta Üye Üyelik tarihi: Jan 2008 Nerden: SaMSuN
Mesajlar: 776
Konular: 146 Rep Puanı:1997 Rep Gücü:0 RD: Ettiği Teşekkür: 0 17 Mesajına 80 Kere Teşekkür Edlidi : | 1 - Direnç : Direncin kelime anlami, birseye karsi gösterilen zorluktur. Devre elemani olan dirençte devrede akima karsi bir zorluk göstererek akim sinirlamasi yapar. Direncin birimi "Ohm" 'dur. 1,000 ohm = 1 Kilo ohm, 1,000,000 ohm = 1 Mega ohm ve 1,000,000,000 ohm = 1 Giga ohm. Direncin degeri üzerine renk kodlari ile yazilmistir. Alt tarafta görülen direncin renkleriri soldan baslayarak, sari, mor, kirmizi ve altindir. Soldan 1. renk 1. sayiyi, 2. renk 2. sayiyi, 3. renk çarpan sayiyi ve 4. renkte toleransi gösterir. Tablodan bakildiginda sari 4'e, mor 7'e ve kirmizida çarpan olarak 10 üzeri 2'ye esittir. Bunlar hesaplandiginda ilk iki sayi yanyana konur ve üçüncü ile çarpilir. Tolerans direncin degerindeki oynama alanidir. Mesela alttaki direncin toleransi %5 ve direncin degeri de 4.7 Kohm'dur. Tolerans bu direncin degerinin 4.7 Kohm'dan %5 fazla veya eksik olabilecegini belirtir. Birde 5 renkli dirençler vardir. Bunlarda ilk üç renk sayi 4. renk çarpan, 5. renk ise toleranstir. Dirençler normalde karbondan üretilirler fakat yüksek akim tasimasi gereken dirençler telden imal edilirler. Ayrica dirençler sabit ve ayarli dirençler olmak üzere ikiye ayrilirlar. Ayarli dirençlerden "Potansiyometre" sürekli ayar yapilan yerlerde, "Trimpot" ise nadir ayar yapilan yerlerde kullanilirlar. Direnç Baglanti Türleri a) - Seri baglanti : Alt taraftaki resimde dört adet direncin birbirine seri baglanmis durumu görülmektedir. A ve B uclarindaki toplam direnç degerinin heaplama formülü, RToplam = R1 + R2 + R3 + R4 seklindedir. Yani 100 ohm + 330 ohm + 10 Kohm + 2.2 Kohm = 12.430 Kohm 'a buda 12,430 ohm'a esittir b) - Paralel baglanti : Paralel baglantida ise formül 1 / RToplam = ( 1 / R1 ) + ( 1 / R2 ) + ( 1 / R3 ) + ( 1 / R4 ) seklindedir. Fakat islemler yapilmadan önce Tüm degerler ayni yani ohm, Kohm veya Mohm cinsine dönüstürülmelidir. 10 Kohm = 10,000 ohm, 2.2 Kohm = 2,200 ohm. Simdide hesaplamayi yapalim. 1 / RToplam = ( 1 / 100 ohm ) + ( 1 / 330 ohm ) + ( 1 / 10,000 ohm ) + ( 1 / 2,200 ohm ) bu esitlige göre, 1 / RToplam = ( 0.01 ) + ( 0.003 ) + ( 0. 0001) + ( 0.00045) => 1 / RToplam = 0.01355 yine bu esitlige göre RToplam = 1 / 0.01355 bu da 73.8 ohm'a esittir. 2 - Potansiyometre : Potansiyometre devamli ayar yapilmasi için üretilmis bir ayali direnç türüdür. radyo ve teyiplerde ses yüksekligini ayarlamak için kullanilir. Üç bacaklidir. 1 ve 3 nolu uçlar arasinda sabit bir direnç vardir. Ortadaki uç ise 1 nolu uç ile 3 nolu uç arasinda hareket eder. 1 nolu ucala arasindaki direnç azaldikça 3 nolu uç arasindaki direnç artar. 3 - Trimpot : Trimpot ise devrenin içinde kalir ve sabit kalmasi gereken ayarlar için kullanilir. Mantigi potansiyometre ile aynidir 4 - Foto Direnç (LDR) : Foto direnç üzerine düsen isik siddetiyle ters orantili olarak, isik siddeti arttiginda direnci düsen, isik siddeti azaldiginda ise direnci artan bir devre elemanidir. Foto direnç AC ve DC akimda ayni özellikleri gösterir. Alt tarafta foto direncin sembolü görülmektedir. 5 - NTC : Ntc direnci isiyla kontrol edilen bir direnç türüdür. Ntc isila ters orantili olarak direnç degistirir. Yani isi arttikca ntcnin direnci azalir. Isi azaldikça da ntcnin direnci artar. Alt tarafta NTC'nin sembolü görülmektedir 6 - PTC : Ptc ise ntcnin tam tersidir. Isiyla dogru orantili olarak direnci degisir. Yani isi artikça direnci artar, isi azaldikça da direnci azalir. Alt tarafta PTC'nin sembolü görülmektedir. 7 - Kondansatör : Kondansatör mantigi iki iletken arasina bir yalitkandir. Kondansatörler içerisinde elektrik depolamaya yarayan devre elemanlaridir. Kondansatöre DC akim uygulandiginda kondansatör dolana kadar devreden bir akim aktigi için iletimde kondansatör dolduktan sonrada yalitimdadir. Devreden sizinti akimi haricinde herhangi bir akim geçmez. AC akim uygulandiginda ise akimin yönü devamli degistigi için kondansatör devamli iletimdedir. Kondansatörün birimi "Farat" 'tir ve "F" ile gösterilir. Faratin altbirimleri Mikro farat (uF), Nano farat (nF) ve Piko farattir (pF). 1 F = 1,000,000 uF, 1 uF = 1,000 nF, 1 nF = 1,000 pF. Simdide kondansatörlerin seri ve paralel baglanti sekillerini inceleyelim. Kondansatör Baglanti Sekilleri a) - Seri baglanti : Kondansatörlerin seri baglanti hesaplamalari, direncin paralel baglanti hesaplariyla aynidir.Burda görüldügü gibi A ve B noktalari arasindaki toplam kapasite 1 / CToplam = ( 1 / C1 ) + ( 1 / C2 ) + ( 1 / C3 ) seklinde hesaplanir. 1 / CToplam = ( 1 / 10 uF ) + ( 1 / 22 uF ) + ( 1 / 100uF ) burdan da 1 / CToplam = 0,1 + 0,045 + 0,01 1 / CToplam = 0,155 CToplam = 1 / 0,155 CToplam = 6.45 uF eder. A ve B arasindaki elektrik ise VToplam = V1 + V2 + V3 seklinde hesaplanir. Bu elektrik kondansatörlerin içinde depolanmis olan elektriktir. b) - Paralel baglanti : Kondansatörlerin paralel baglanti hesaplamalari, direncin seri baglanti hesaplariyla aynidir. CToplam = C1 + C2 + C3 hesapladigimizda, CToplam = 10 uF+ 22 uF + 100 uF CToplam = 132 uF eder. A ve B noktalari arasindaki elektrik ise VToplam = V1 = V2 = V3 seklindedir. Yani tüm kondansatörlerin gerilimleride esittir 8 - Bobin : Bir iletkenin ne kadar çok egik ve büzük bir sekilde ise o kadar direnci artar. Bobin de bir silindir üzerine sarilmis ve disi izole edilmis bir iletken telden olusur. Bobine alternatif elektrik akimi uygulandiginda bobinin etrafinda bir manyetik alan meydana gelir. Ayni sekilde bobinin çevresinde bir miknatis ileri geri hareket ettirildiginde bobind elektrik akimi meydana gelir. Bunun sebebi miknatistaki manyetik alanin bobin telindeki elektronlari açiga çikarmasidir. Bobin DC akima ilk anda direnç gösterir. Bu nedenle bobine DC akim uygulandiginda bobin ilk anda yalitkan daha sonra iletkendir. Bobine AC akim uygulandiginda ise akimin yönü devamli degistigi için bir direnç göterir. Bobinin birimi "Henri" 'dir. Alt katlari ise Mili Henri (mH) ve Mikro Henridir (uH). Elektronik devrelerde kullanilan küçük bobinlerin bosta duranlari oldugu gibi nüve üzerine sarilmis olanlarida mevcuttur. Ayrica bu nüve üstüne sarili olanlarin nüvesini bobine yaklastirip uzaklastirarak çalisan ayarli bobinlerde mevcuttur. Bobin trafolarda elektrik motorlarinda kullanilir. Elektronik olarakta frekans üreten devrelerde kullanilir. |
Tags |
aciklamalari, devre, elektronik, elemanlar, temel, ve |
Konuyu Toplam 1 Üye okuyor. (0 Kayıtlı üye ve 1 Misafir) | |
| |
Benzer Konular | ||||
Konu | Konuyu Başlatan | Forum | Cevaplar | son Mesaj |
Temel Kotil Biyografisi - Temel Kotil Kimdir - Temel Kotil Hayatı -Temel Kotil Yaşamı | Kartal | Siyasetçilerin Hayatı ( Biyografisi ) | 1 | 14.11.19 18:09 |
Rüyada Taş Temel Görmek - Rüyada Taş Temel Açıklaması ve Yorumu - Taş Temel Rüya Tabi | Tarot | T-U-Ü-V-Y-Z ile Başlayan Rüya Tabirleri | 0 | 23.08.12 08:42 |
Rüyada Temel Görmek - Rüyada Temel Açıklaması ve Yorumu - Temel Rüya Tabiri | Tarot | T-U-Ü-V-Y-Z ile Başlayan Rüya Tabirleri | 0 | 21.08.12 19:55 |
Devre İlköğretim Okulu Taşova Amasya - Amasya Taşova Devre İlköğretim Okulu | Pelince | Anaokulu - İlköğretim | 0 | 05.08.12 20:14 |
Elektronik Bellekler | Güllü | Network ve İnternet | 0 | 18.01.09 23:04 |