tualimforum.com  

Geri git   tualimforum.com > EĞİTİM ve ÖĞRETİM > Üniversiteler-Açıkögretim > Açıkögretim Ders Notları > Açıköğretim 1. Sınıf Ders Notları
Kayıt ol Yardım Üye Listesi Ajanda Bugünki Mesajlar

Açıköğretim 1. Sınıf Ders Notları Açıkögretim 1. sınıf ders notları,Açıkögretim üniversitesi 1. sınıf ders notları,Açıkögretim okulu 1. sınıf ders notları...


Konu Bilgileri
Konu Başlığı
Fonksiyonlar-Limit-Türev
Konudaki Cevap Sayısı
0
Şuan Bu Konuyu Görüntüleyenler
 
Görüntülenme Sayısı
1287

Yeni Konu aç  Cevapla
 
LinkBack Seçenekler
Alt 03.05.09, 22:31   #1 (permalink)
Kullanıcı Profili
S.Moderators
 
SERDEM - ait Kullanıcı Resmi (Avatar)
Kullanıcı Bilgileri
Üyelik tarihi: Mar 2008
Mesajlar: 7.687
Konular: 6910
Puan Grafiği
Rep Puanı:11076
Rep Gücü:20
RD:SERDEM has a reputation beyond reputeSERDEM has a reputation beyond reputeSERDEM has a reputation beyond reputeSERDEM has a reputation beyond reputeSERDEM has a reputation beyond reputeSERDEM has a reputation beyond reputeSERDEM has a reputation beyond reputeSERDEM has a reputation beyond reputeSERDEM has a reputation beyond reputeSERDEM has a reputation beyond reputeSERDEM has a reputation beyond repute
Teşekkür

Ettiği Teşekkür: 47
464 Mesajına 935 Kere Teşekkür Edlidi
:
icon1c Fonksiyonlar-Limit-Türev

FONKSİYON

TANIM: A ve B gibi boş olmayan iki küme için, A nın her elemanını B’nin bir ve yalnız bir elemanı ile eşleyen A’dan B’ye bir f bağıntısına A ‘dan B’ye FONKSİYON denir.

Kısaca, A’dan B’ye bir bağıntının fonksiyon olması için,

a) x A için (x, y) f olacak biçimde y B olmalı.

b) A kümesinin bir elemanı B kümesinin birden fazla elemanı ile eşlenemez.

A kümesinin f fonksiyonunun TANIM KÜMESİ ve B kümesine f fonksiyonunun DEĞER KÜMESİ denir.

f fonksiyonu x A’yı y B’ye eşliyorsa y’ye x’in görüntüsü denir ve f: x y veya y = f (x) biçiminde gösterilir.

TERS FONKSİYON:
f: A B ye, f: x y = f (x) fonksiyonu birebir ve örten fonksiyon olsun. B A ya ve y x fonksiyonuna f in tersi denir ve f-1 şeklinde gösterilir.

f: A B f-1 : B A
f: x y = f (x) f-1 : y x = f-1(y)


BİLEŞKE FONKSİYON:
f: A B ve g: B C birer fonksiyon ise A’daki her elemanı f ve g fonksiyonları ile C’nin elemanlarına dönüştüren fonksiyon f ile g’nin bileşkesi denir.

ÖZELLİKLERİ:
1) fog gof
2) (fog)oh = fo(goh
3) fof-1 = f-1 of = I ( I birim fonksiyon)
4) foI = Iof = f
5) (f-1)-1 = f
6) (fog)-1 = g-1of-1
7) (fogoh)-1 = h-1 o g-1 o f-1
8) fog = h f = hog-1 ve g = f-1 o h

ÖRNEKLER:
1. R R’ye iki fonksiyon, f (x) = 2x – 1 ve g (x) = x + 1 ise (gof)( - 1) nedir?
Çözüm:
(gof)(- 1) = g(f(- 1)) = g(2.(- 1) – 1 )
= g(- 3) = - 3 + 1 = - 2
2. f ve g : R R’ye
f (x) = 3x + 2 ve g(x) = ise, (fog)(x) ve (gof)(x) fonksiyonlarını bulun.
Çözüm:

3. f ve g : R R’ye
f (x) = 2x + 1 ve (gof) (x) = 3x + 2 ise, g(x) nedir?
Çözüm:
(gof of-1)(x) = (3x + 2) of-1

g (x) = (3x + 2) of-1
f (x) = 2x + 1 f-1 (x) = dir.

4. f ve g : R R’ye f (x) = ve (fog)(x) = 6x + 1 ise g(x) = ?
Çözüm:
(f-1o fog)(x) = f-1 o (6x + 1)
g (x) = f-1 o(6x + 1)
f (x) =
g (x) = (3x + 1) o (6x + 1)
g (x) = 3. (6x + 1) + 1 = 18x + 4
5. f ve g : R R’ye
(gof-1) (x) = ve g-1 (x) = 3x – 1 ise f (x) nedir?
Çözüm:
(g-1ogof)(x) = g-1 o


LİMİT
BİR FONKSİYONUN LİMİTİ
TANIM
A R ve f: A – {xo} R ‘ye bir fonksiyon F(x) olsun. x değişkeni xo R sayısına yaklaştığında f(x) fonksiyonu da t R’ye yaklaşıyorsa t gerçel sayısına x, xo’a yaklaşırken f(x) fonksiyonunun limiti denir ve lim f(x) = t
x xo
şeklinde gösterilir.

SAĞDAN VE SOLDAN LİMİT:
SAĞDAN LİMİT:
y = f(x) fonksiyonunda x, xo R değerine sağ taraftan yaklaşırken f de bir t1 R değerine yaklaşıyorsa t1’e fonksiyonun sağdan limiti denir ve lim f(x) = t1 biçiminde
x x+o
gösterilir.

SOLDAN LİMİT:
y = f(x) fonksiyonunda x, xo R değerine sol taraftan yaklaşırken f de bir t2 R değerine yaklaşıyorsa t2 ye fonksiyonun soldan limiti denir ve lim f(x) = t2
x x-o

ÖRNEK:
x2 + 1, x 0 ise,
x + 1 , x < 0 ise,

fonksiyonun x = 0 noktasında limiti nedir?

ÇÖZÜM:
lim f(x) = lim (x2 + 2) = 02 + 1 = 1
x 0+ x 0+

lim f(x) = lim (x + 1) = 0 + 1 = 1
x 0- x 0-

O halde lim f(x) = 1 dir.
x 0


LİMİT TEOREMLERİ:

1) lim (f(x) g(x)) = lim f(x) lim g(x)
x x0 x x0 x x0

2) lim (f(x).g(x)) = lim f(x).lim g(x)
x x0 x x0 x x0

3) lim c = c (c R)
x x0

4) lim (c.f(x)) = c . lim f(x)
x x0 x x0

5) g(x) 0 ve lim g(x) 0 ise
x x0

TÜREV VE UYGULAMALARI

TANIM: y = f(x) fonksiyonu [a, b] kapalı aralığında tanımlı ve sürekli, x0 (a,b) olsun.

limiti bir gerçel sayı ise,

bu limite y = f(x) fonksiyonunun x = x0 noktasındaki TÜREVi denir ve f’(x0) şeklinde gösterilir.

ÖRNEK:

f(x) = |x2 – 4| fonksiyonu verilir.

a) f’(2) = ? b) f’(1) = ?

ÇÖZÜM:

a) f (2) =|22 – 4| = 0 olduğu için fonksiyonun x = 2 noktasında türevi yoktur.

TÜREV ALMA KURALLARI:

1) c R olmak üzere
f (x) = c f’(x) = 0
2) f (x) = x f’(x) = 1
3) f (x) = cx f’(x) = c
4) f (x) = c . xn f’(x) = c . n . xn-1
5) f (x) = c . un f’(x) = c . n . un-1 . u’x
6) f (x) = u v f’(x) = u’x v’x
7) f (x) = u . v f’(x) = u’x . v + v’x . u
8) f (x) = u . v . t f’(x) = u’x . v. t + v’x . u . t
+ t’x . u . v
9) f (x) =
10) f (x) =

ÖRNEKLER:
1. f (x) = 5 f’(x) = 0
2. f (x) = f’(x) = 0
3. f (x) = x5 f’(x) = 5x4
4. f (x) = x f’(x) = 1
5. f (x) = 2x f’(x) = 2
6. f (x) =

7. f (x) = x4 – x3 + 2x – 3 fonksiyonunun türevi nedir?
ÇÖZÜM:
f’(x) = 4x3 – 3x2 + 2

8. f (x) = (3x2 + 5)11 fonksiyonunun türevi nedir?
ÇÖZÜM:
f’(x) = 11 (3x2 + 5)10 . (3x2 + 5)’
= 11(3x2 + 5)10 . 6x
= 66x (3x2 + 5)10

9. f (x) = fonksiyonunun türevi nedir?
ÇÖZÜM:

olur.

TRİGONOMETRİK FONKSİYONLARIN TÜREVİ:
A)
1) f (x) = Sinx f’(x)=Cosx
2) f (x) = Cosx f’(x) = - Sinx
3) f (x) = tanx f’(x) = 1 + tan2x

4) f (x) = Cotx f’(x) = - (1 + Cot2x)

ÖRNEKLER:
1. f (x) = Sin3x f’(x) = 3Cos3x
2. f (x) = tan(x2 – 1) f’(x) = ?
ÇÖZÜM:
f’(x) = (x2 –1)’ . [1 + tan2(x2 – 1)]
f’(x) = 2x [1 + tan2 (x2 – 1)]
3. f (x) = Sin (tan x) fonksiyonunun türevi nedir?
ÇÖZÜM:
f’(x) = Cos (tanx) . (tanx)

4. f (x) = 2Sin3 x + 3Cos2x f’(x) = ?
ÇÖZÜM:
f’(x) = 2.3.Sin2x . (Sin x)’ + 3.2 Cosx . (Cosx)’
f’(x) = 6Sin2x . Cosx + 6 Cosx . ( - Sin x)

İNTEGRAL
TANIM:
f: [a,b] R ve F:[a, b] R ye tanımlı iki fonksiyon olsun, [a,b] için, F’(x) = f(x) yazılabilirse F(x)’e f(x)’in ilkel fonksiyonu yada integrali denir.
F’(x) dx = F(x) veya
f(x) dx = F(x) şeklinde gösterilir.

ÖRNEK:
f (x) = 2x2 f’(x) = 4x 4xdx = 2x2
f (x) = 2x2 – 1 f’(x) = 4x 4xdx = 2x2 – 1
f (x) = 2x2 + 3 f’(x) = 4x 4xdx =2x2 + 3

BELİRSİZ İNTEGRAL ÖZELLİKLERİ:
A. f’(x) dx = f(x) + C
B. d[f (x)] = f (x) + C
C. f (x)dx = f (x) dx ( R)
D. [f (x) g(x)] dx= f(x) dx g (x)dx
E. [ f (x) dx] = f (x)
F. d[ f (x)dx] = f(x) dx

ÖRNEKLER:
1. 2x dx = x2 + C
2. d(3x2) = 3x2 + C
3. 5x4dx = 5 x4dx
4. (x3 + x)dx = x3 dx + x dx
5. [ 2x dx] = 2x
6. d (x3dx) = x3dx


ÖRNEKLER:
1.
2. 12dx = 12x + C
3.
4. (x3 + x2 – 2)2 (3x2 + 2x)dx = ?
ÇÖZÜM 4:
x3 + x2 – 2 = u (3x2 + 2x) dx = du


TRİGONOMETRİK İNTEGRAL:
A. Cos x dx = Sin x + C
B. Sin x dx = - Cosx + C
C. Sec2x dx = (1 + tan2x) dx

D. Cosec2x dx = (1 + Cot2x) dx =
=

ÖRNEKLER:
1. Cos2x . Sin x dx =
ÇÖZÜM:
Cosx = u -Sin x dx = du
Sin x dx = - du
u2 . (-du) = - u2 . du



2. Sin 3x dx = ?
ÇÖZÜM:

3. Cos (2x + 1) dx = ?
ÇÖZÜM:


LOGARİTMİK VE ÜSTEL İNTEGRAL:
A.
B.
C. eu du = eu + C
D.

ÖRNEKLER:
1.
2. tan x dx = ?
ÇÖZÜM:

Cos x = u - Sin x dx = du
Sin x dx = - du
--------------Tualimforum İmzam--------------
Aksini Belirtmediğim Takdirde Yazdığım Konular ALINTIDIR



Liseler - Anadolu Liseleri - Fen Liseleri

Anaokulu - İlköğretim

Sınav Soruları ve Ders Notları
SERDEM isimli Üye şimdilik offline konumundadır   Alıntı ile Cevapla
Cevapla

Tags
fonksiyonlarlimitturev


Konuyu Toplam 1 Üye okuyor. (0 Kayıtlı üye ve 1 Misafir)
 

Yetkileriniz
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is Açık
Smileler Açık
[IMG] Kodları Açık
HTML-KodlarıKapalı
Trackbacks are Açık
Pingbacks are Açık
Refbacks are Açık


Benzer Konular
Konu Konuyu Başlatan Forum Cevaplar son Mesaj
Matematik (Fonksiyon Limit Türev) SERDEM Açıköğretim 1. Sınıf Ders Notları 0 06.09.09 15:28
Fonksiyonlar ile İlgili Ders Notları SERDEM Açıköğretim 1. Sınıf Ders Notları 0 04.05.09 17:53
Tek ve Çift Fonksiyonlar SERDEM Matematik - Geometri 0 08.08.08 17:19
Fonksiyon-Limit-Türev-Integral SERDEM Matematik - Geometri 0 08.08.08 14:30
Tek ve Çift Fonksiyonlar SERDEM Matematik - Geometri 0 08.08.08 13:15


Bütün Zaman Ayarları WEZ +3 olarak düzenlenmiştir. Şu Anki Saat: 20:49 .


Powered by vBulletin Version 3.8.7
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Search Engine Optimization by vBSEO 3.6.0 RC 2