tualimforum.com  

Geri git   tualimforum.com > EĞİTİM ve ÖĞRETİM > Dersler/Ödevler > Matematik - Geometri
Kayıt ol Yardım Üye Listesi Ajanda Bugünki Mesajlar

Matematik - Geometri Matematik ödevleri,Geometri ödevleri...


Konu Bilgileri
Konu Başlığı
Polinomlar
Konudaki Cevap Sayısı
0
Şuan Bu Konuyu Görüntüleyenler
 
Görüntülenme Sayısı
1116

Yeni Konu aç  Cevapla
 
LinkBack Seçenekler
Alt 08.08.08, 16:34   #1 (permalink)
Kullanıcı Profili
S.Moderators
 
SERDEM - ait Kullanıcı Resmi (Avatar)
Kullanıcı Bilgileri
Üyelik tarihi: Mar 2008
Mesajlar: 7.687
Konular: 6910
Puan Grafiği
Rep Puanı:11076
Rep Gücü:20
RD:SERDEM has a reputation beyond reputeSERDEM has a reputation beyond reputeSERDEM has a reputation beyond reputeSERDEM has a reputation beyond reputeSERDEM has a reputation beyond reputeSERDEM has a reputation beyond reputeSERDEM has a reputation beyond reputeSERDEM has a reputation beyond reputeSERDEM has a reputation beyond reputeSERDEM has a reputation beyond reputeSERDEM has a reputation beyond repute
Teşekkür

Ettiği Teşekkür: 47
464 Mesajına 935 Kere Teşekkür Edlidi
:
Standart Polinomlar

POLİNOMLAR

A. TANIM
n bir doğal sayı ve a0, a1, a2, ... , an – 1, an birer gerçel sayı olmak üzere,
P(x) = a0 + a1x + a2x2 + ... + an – 1xn – 1+anxn
biçimindeki ifadelere x değişkenine bağlı, gerçel (reel) katsayılı n. dereceden polinom (çok terimli) denir.
*
B. TEMEL KAVRAMLAR
P(x) = a0 + a1x + a2x2 + ... + an – 1xn – 1+anxn
olmak üzere,
Ü* a0, a1, a2, ... , an–1, an in her birine polinomun terimlerinin katsayıları denir.
Ü* a0, a1x, a2x2, ... , an–1xn – 1, anxn in her birine polinomun terimleri denir.
Ü* Polinomun terimlerinden biri olan a2x2 teriminde x in kuvveti olan 2 ye bu terimin derecesi denir.
Ü* Polinomu oluşturan terimler içerisinde derecesi en büyük olan terimin katsayısına polinomun baş katsayısı, bu terimin derecesine de polinomun derecesi denir ve
**** der [p(x)] ile gösterilir.
Ü* Değişkene bağlı olmayan terime polinomun sabit terimi denir.
Ü* a0 = a1 = a2 = ... = an = an–1 = 0 ise, P(x) polinomuna sıfır polinomu denir. Sıfır polinomunun derecesi tanımsızdır.
Ü* a0 ¹ 0 ve a1 = a2 = a3 = ... an – 1 = an = 0 ise, P(x) polinomuna sabit polinom denir. Sabit polinomunun derecesi sıfırdır.

Her polinom bir fonksiyondur. Fakat her fonksiyon polinom olmayabilir.
Buna göre, fonksiyonlarda yapılan işlemler polinomlarda da yapılır.
*
C. ÇOK DEĞİŞKENLİ POLİNOMLAR
P(x, y) = 3xy2 – 2x2y – x + 1
biçimindeki ifadelere iki değişkenli polinomlar denir. Bu polinomda aynı terimdeki değişkenlerin üsleri toplamından en büyük olanına polinomun derecesi denir.
*
D. POLİNOMLARDA EŞİTLİK
Aynı dereceli en az iki polinomun eşit dereceli terimlerinin katsayıları birbirine eşit ise bu polinomlara eşit polinomlar denir.
*
Ü* P(x) polinomunun katsayıları toplamı P(1) dir.
Ü* P(x) polinomunda sabit terim P(0) dır.
*

Herhangi bir polinomda; kat sayılar toplamı bulunurken o polinomda değişkenler yerine 1 yazılır. Sabit terim bulunurken o polinomda değişkenler yerine 0 (sıfır) yazılır.
P(ax + b) polinomunun; kat sayıları toplamı
P(a + b) ve sabit terimi P(b) dir.
*
Ü* P(x) polinomunun;
*** Çift dereceli terimlerinin kat sayıları toplamı:
*
*** Tek dereceli terimlerinin kat sayıları toplamı:
*
*
E. POLİNOMLARDA İŞLEMLER
1. Toplama ve Çıkarma
P(x) = anxn + an – 1xn – 1 + an – 2xn – 2 + ...
Q(x) = bnxn + bn – 1xn – 1 + bn – 2xn – 2 + ...
olmak üzere,
*
P(x) + Q(x) = (an + bn)xn + (an – 1 + bn–1)xn – 1 + ...
P(x) – Q(x) = (an – bn)xn + (an – 1 – bn–1)xn – 1 + ...
olur.
*
2. Çarpma
İki polinomun çarpımı, birisinin her bir teriminin diğerinin her bir terimi ile ayrı ayrı çarpımlarından elde edilen terimlerin toplamına eşittir.
*
3. Bölme
der [P(x)] ³ der [Q(x)] ve Q(x) ¹ 0 olmak üzere,


*
P(x) : Bölünen polinom
Q(x) : Bölen polinom
B(x) : Bölüm polinom
K(x) : Kalan polinomdur.
*
Ü* P(x) = Q(x) . B(x) + K(x)
Ü* der [K(x)] < der [Q(x)]
Ü* K(x) = 0 ise, P(x) polinomu Q(x) polinomuna tam bölünür.
Ü* der [P(x)] = der [Q(x)] + der [B(x)]
*
Polinomlarda bölme işlemi, sayılarda bölme işlemine benzer biçimde yapılır.
Bunun için;
1) Bölünen ve bölen polinomlar x in azalan kuvvetlerine göre sıralanır.
2) Bölünen polinom soldan ilk terimi, bölen polinomun ilk terimine bölünür.
3) Bulunan bu bölüm, bölen polinomun bütün terimleri ile çarpılarak, aynı dereceli terimler alt alta gelecek biçimde bölünen polinomun altına yazılır.
4) Bulunan sonuç, bölünen polinomdan çıkarılır. Fark polinomuna da aynı işlem uygulanır.
5) Yukarıdaki işlemlere, kalan polinomun derecesi bölen polinomun derecesinden küçük oluncaya kadar devam edilir.
*
F. KALAN POLİNOMUN BULUNMASI
Kalan polinomu, klasik bölme işlemiyle ya da aşağıdaki 3 yöntemden biri ile bulabiliriz.
*
1. Bölen Birinci Dereceden İse
Bir polinomun ax + b ile bölümünden kalanı bulmak için, polinomda değişken yerine yazılır.
•* P(x) in x – b ile bölümünden kalan P(b) dir.
•* P(mx + n) nin ax + b ile bölümünden kalan
**
*
2. Bölen Çarpanlara Ayrılıyorsa
Bölen çarpanlara ayrılıyorsa, her çarpan sıfıra eşitlenir. Bulunan kökler polinomda yazılarak kalan bulunur.
P(x) polinomunun a(x – b) . (x – c) ye bölümünden kalan mx + n ve bölüm polinom Q(x) ise,
P(x) = a(x – b) . (x – c) . Q(x) + mx + n olur.
P(b) = mb + n ... (1)
P(c) = mc + n ... (2)
(1) eşitliği ile (2) eşitliğinin ortak çözümünden m ve n bulunur.

Bölen polinomun derecesi n ise kalan polinomun derecesi en fazla (n – 1) dir.
*
3. Bölen Çarpanlarına Ayrılamıyorsa
Bölen çarpanlarına ayrılamıyorsa aşağıdaki 2 yöntem sırasıyla uygulanarak kalan polinom bulunur.
1) Bölen polinom sıfıra eşitlenerek en büyük dereceli değişkenin eşiti bulunur.
2) Bulunan ifade bölünen polinomda yazılır.
•** P(x) polinomunun ax2 + bx + c ile bölümünden kalanı bulmak için P(x) polinomunda x2 yerine yazılır.
*
4. P(x) Polinomu (ax + b)n İle Tam Bölünüyorsa, (n Î N+, n > 1)
--------------Tualimforum İmzam--------------
Aksini Belirtmediğim Takdirde Yazdığım Konular ALINTIDIR



Liseler - Anadolu Liseleri - Fen Liseleri

Anaokulu - İlköğretim

Sınav Soruları ve Ders Notları
SERDEM isimli Üye şimdilik offline konumundadır   Alıntı ile Cevapla
Cevapla

Tags
polinomlar


Konuyu Toplam 1 Üye okuyor. (0 Kayıtlı üye ve 1 Misafir)
 

Yetkileriniz
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is Açık
Smileler Açık
[IMG] Kodları Açık
HTML-KodlarıKapalı
Trackbacks are Açık
Pingbacks are Açık
Refbacks are Açık



Bütün Zaman Ayarları WEZ +3 olarak düzenlenmiştir. Şu Anki Saat: 00:46 .


Powered by vBulletin Version 3.8.7
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Search Engine Optimization by vBSEO 3.6.0 RC 2