Tekil Mesaj gösterimi
Alt 04.12.08, 05:06   #2 (permalink)
Kullanıcı Profili
Kedi
Gamma Üye
 
Kedi - ait Kullanıcı Resmi (Avatar)
Kullanıcı Bilgileri
Üyelik tarihi: Feb 2008
Mesajlar: 3.713
Konular: 3171
Puan Grafiği
Rep Puanı:3699
Rep Gücü:56
RD:Kedi has a reputation beyond reputeKedi has a reputation beyond reputeKedi has a reputation beyond reputeKedi has a reputation beyond reputeKedi has a reputation beyond reputeKedi has a reputation beyond reputeKedi has a reputation beyond reputeKedi has a reputation beyond reputeKedi has a reputation beyond reputeKedi has a reputation beyond reputeKedi has a reputation beyond repute
Teşekkür

Ettiği Teşekkür: 45
128 Mesajına 262 Kere Teşekkür Edlidi
:
Standart 3. Renk

3. Renk

Bir radyasyon kaynağından yayılan ışık (bu kaynak gaz deşarj tüpü, güneş yada akkor flama olabilir) homojen değildir. Aksine 38 0 ile 760 milimikron arasında değişen dalga b oylarına sahip farklı renklerin yaklaşık olarak eşit miktarda karışımından meydana gelmiştir. Bütün dalga boyları müzikteki akorda benzer bir şekilde birbirleri ile uyum halindedir. Ancak kulağın müzikteki bir akordu dinlediğinde içerdiği notaları ayırt edebilmesine rağmen, göz gördüğü akor halindeki beyaz ışığın içindeki dalga boylarını teker teker ayırt edemez. Renkli fotoğraf söz konusu olduğunda bu oldukça önemli bir faktördür. Çünkü göze beyaz görülmesine rağmen gerçekte beyaz olmayan ve renkli film tarafından da gerçek halleri ile kaydedilen bir çok ışık türü vardır. Renkli film, ışığın spektrum yapısı içindeki farklılıklara göze göre çok daha duyarlılık gösterir. Bu yüzden filmi etkileyen ışık onun dengelendiği ışıktan farklı ise sonuçta ortaya çıkan renkli dialarda belli bir yöne doğru renk sapması görülecektir. Bunu kanıtlamak amacıyla şöyle bir test yapılabilir. Üzerinde çeşitli renkler bulunan bir test kartının güneş ışığı altında, kapalı gök ışığı altında, akkor flamanlı lambadan yayılan ışık altında ve florasan ışığı altında fotoğraflarını çekelim. Filmin dengelendiği ışığın dışında ki türlerde renklerin doğal dışı ve farklı göründüğü fark edilecektir.
Renkli filmler belli bir tür ışıkta doğru renk vermek için tasarlandıklarından, gözümüz de beyaz zannettiği ışığın içindeki küçük farklılıkları algılayamadığından, doğru renk elde edebilmek için doğru filmin, doğru ışıkta kullanılması gerekir. Bu nedenle ışığın belli bir sınıflandırılmaya ve birimlendirilmeye tabi tutulması gerekir. Bu amaçla hazırlanan cetvele de Kelvin Skalası adı verilir.

3.1. Kelvin Skalası :

Adını İngiliz fizikçi W.T. Kelvin�den alır. Işığı renk ısısı türünden ölçer. Sadece akkor ışık kaynaklarında uygulanır. Kelvin Skalasının başlangıç noktası mutlak �0″ yani �273 °C �dir. Bir demir parçasını ısıttığımızda ısının miktarına bağlı olarak ışık yaymaya başladığını biliriz. Bundan yola çıkarak 1000 °C �ye kadar ısıtılmış bir demir parçasının yaydığı kırmızımtırak ışık için 1273RK derecesi tanımlaması yapılabilir. Herhangi bir ışığın renk ısısı, siyah gövde radyatörü adı verilen ve bir tarafında bir delik bulunan içi boş ****l bir kürenin tanımlanacak ışık ile aynı renge gelene kadar ısıtılıp santigrat cinsinden ölçülen derecesine 273 rakamının ilave edilmesi ile bulunur. Bulunan bu rakam incelenen ışığın �K� derecesidir. Bu noktada renklerden bahsederken sanatçıların tanımlamalarıyla fizikçilerin tanımlamaları arasındaki tersliğe dikkat çekilmelidir. Sanat çevrelerinde kırmızı ve komşusu olan renkler sıcak, mavi ve komşusu olan renkler soğuk diye tanımlandıkları halde, fizikçiler Kelvin Skalasında da görüleceği gibi, kırmızı grubu soğuk, mavi grubu ise sıcak diye tanımlarlar. Fizikçiler için koyu kırmızımsı ışık 1000K civarında olurken, mavi kuzey göğünden yayılan ışık 27.000K civarında olabilir. Tabii bu hiçbir zaman göğün o bölümünün 27.000 °C dereceye kadar ısındığı için o rengi yaydığı anlamına gelmez.

Kelvin metrenin ancak renk düzeltme Filtre seti ile birlikte olduğunda bir anlamı vardır. Tek başına bir işe yaramaz. Kelvin metre ancak konunun genelini aydınlatan ışıkta bir uygunsuzluk var ise düzeltilmesinde yardımcı olur. Konu içinde oluşmuş yerel renk sapmalarını düzeltmekte yararlı olamaz. Birinci tür kırmızı ve mavi, ikinci tür kırmızı, mavi magenta yeşil dengesini veren Kelvin metreler vardır.


Işık kaynağı Renk ısısı
Mum alevi 1500 K
100 Watt genel amaçlı ampul 2850 K
500 Watt Profesyonel tungsten ampul 3200 K
El Flaşı 6200 � 6800 K
Sabah ve öğleden sonra gün ışığı 5000 � 5500 K
Öğlen güneşi, mavi gök, beyaz bulutlar 6000 K
Sadece mavi gök ışığı (gölgedeki konular) 10000 � 12000 K
Berrak mavi kuzey göğü 15000 � 27000 K
Renkli filmlerin renk ısısı
Gün ışığı film 5500 K
Tungsten film 3200 K

3.2. Gerçek ve sahte renk ısıları :

Yukarıda verilen örnekte olduğu gibi (mavi kuzey göğü örneği) Kelvin değerleri sadece akkor ışık kaynakları için gerçektir. Diğer kaynakların renkleri benzeştirme yolu ile bulunmuş değerlerdır. Ancak bu konuda işler biraz daha karışır. Çünkü renk ısısı sadece ışığın renginin ölçüsüdür. Fakat o ışığın spektrum yapısı hakkında bilgi vermez. Önceden belirtildiği gibi aynı renk ısısına sahip fakat birbirinden farklı beyaz ışıkların varlığı söz konusudur. Bu tür ışıklar renk ısıları aynı olmakla beraber spektrumları farklı olduğundan renkli film üzerinde de farklı sonuçlar verirler. Ancak Kelvin metre bu spektrum farkını gösteremez yani beyaz ışığı analiz edemez. Akkor ışık kaynakları tarafından yayınlanan ışınlar, siyah gövde radyatörü tarafından yayılan ışınlarla spektrum yapısı bakımından büyük benzerlik gösterirler. Siyah gövde radyatörü de bütün renk ısı ölçümlerinin temelini oluşturur.

Renk, ışığın doğurduğu psikofiziksel bir olaydır. Etkileri renk algılama duygusuna göre üç bölümde incelenir.
1. Gelen ışığın spektrum yapısı
2. Işığı geçiren yada yansıtan malzemenin molekül yapısı
3. Renk algılama organlarımız. Yani göz ve beyin.

3.3. Rengin doğası :

Renk ışıktır. Işığın olmadığı yerde yani karanlıkta en renkli objeler bile siyaha dönüşürler. Renklerini kaybederler. Değişmez gerçek kural budur. Bu Işık �renk alsında var ama ışık olmadığı için görülemiyorlar� anlamında değildir. Bu ifade basitçe ışığın olmadığı yerde renk de olmaz demektir. Rengin ışık olduğu kolaylıkla kanıtlanabilir. Beyaz bir bina gün ışığında beyazdır. Gece kırmızı spotlarla aydınlatıldığında kırmızıya dönüşür. Mavi spotlarla aydınlatılırsa maviye dönüşür. Diğer bir deyimle objenin rengi o objeyi görmemizi sağlayan ışığın rengi ile birlikte değişir.

Bu ifadeden sonra boyaların ve boyar maddelerin, yani objelere renklerini veren malzemenin de gerçek ve tek başlarına mevcut olup olmadıkları da tartışılabilir. Bu tür maddelerin renkleri de ışık tarafından üretilir. Bu yüzden de kendilerini aydınlatan ışığın uğradığı değişimler bu objeleri de ve renklerini de etkiler. Kumaş almaya giden her kadın, kumaşın rengini dükkanın dışına çıkarak gün ışığında kontrol etmeyi tercih ederler. Çünkü boyanmış kumaşlar gün ışığı altında farklı, akkor ışık altında farklı ve florasan ışığı altında farklı renkte görülürler. Işığın farklı renkleri vardır. Gün ışığı beyaz, akkor ışık sarımsıdır. Florasan ışıkta da kırmızı eksikliği vardır.

3.4. Spekturum :

Beyaz olarak algılanan ışık homojen bir ortam olmayıp, farklı dalga boylarının karışımından meydana gelmiştir. Bu dalga boyları birbirlerinden görsel olarak ayrılabilirler. Bu işi gerçekleştiren cihaz bir prizma yada bir spektroskoptur.sonuçta ortaya spektrum adı verilen ve ışığın içindeki farklı dalga boylarının her birinin farklı bir renk bandı olarak görüldüğü bir ışık kuşağı ortaya çıkar. Spektrumun en bilinen örneği gökkuşağıdır. Gökkuşağının renkleri, güneş ışınlarının, havada asılı bulunan çok fazla miktardaki su damlacığına çarparak kırılıp yayılmasından kaynaklanır. Klasik Newton spektrumu yedi farklı rengi tanımlar. Kırmızı,turuncu, sarı, yeşil, mavi, mor, eflatun.

3.5. Rengin oluşumu :

Renk, bir çok farklı yolla oluşturulabilir ve bunların çoğu aynı ortak prensibe göre çalışır. Bir rengin oluşabilmesi, fotoğraflanabilmesi ve görülebilmesi için o rengin gözlemlenen cismi aydınlatan ışığın spektrumunda mevcut bulunması gerekir. Eğer belli bir ışığın spektrumunda, belli bir rengi, mesela kırmızıyı oluşturan dalga boyları yok ise güneş ışığı altında kırmızı görülen bir obje, söz konusu ışığın altında bakıldığında kırmızı gözükemez. Aşağı da renk oluşturma yöntemlerinden bazıları anlatılmıştır.

1. Emilme:

Gördüğümüz ve fotoğrafladığımız objelerin çoğunun renkleri pigment renkleridir. Etrafımızdaki objeler ve doğadaki doğal oluşumlar yani yeşil yaprak, sarı, mavi çiçek, kırmızı toprak gibi bu tür renkler ışığın emilmesiyle oluşurlar. İçinde bütün dalga boylarını taşıyan beyaz ışık objeye düşer. Bu dalga boylarından bir kısmı objenin derinlerine emilir. Emilmeyenler yansır. Bu yansıyanlar rengi oluşturur. Bütün pigment renkleri bu şekilde üretilirler. Eğer objenin yüzeyi çok düz ve parlak ise ışık iki şekilde yansır. Biri yukarda bahsedilen ve objeye renginin verilmesini sağlayan dağınık yansıma, diğeri, parlama. Parlak yüzeye gelen ışık geliş açısına eşit ama çok şiddetli yansır. Hem yüzeye kendi rengini verir, hem de parlama denilen bir yansıma oluşturur.

1.1. Dağınık yansıma: Yansımanın rengi oluşturan bu türü, objenin yüzeyinde ışığın belli bir miktar derine inerek, spektrum yapısını değiştirmesi ve bir bölümünün madde tarafından emilmesinden sonra kalanının geri yansıması şeklinde oluşur.

1.2. Parlama: Parlama dediğimiz yansıma türü, gözlemcinin bakış açısı, ışığın yüzeye geliş açısına yaklaştıkça belirgin hale gelir. Bu tür yansıma yüzeye gelen ışınların açıları dolayısıyla yüzeyin içine giremeyip, bir değişikliğe uğramadan öteye yansımalarıyla mümkün olur. Sonuçta bu tür parlamada ışık kendi spektrum yapısını korur ve objenin rengi ne olursa olsun ışık kaynağının parlamasını ışık kaynağının renginde görürüz. Fotoğrafta parlamanın bazı hallerde altındaki bütün renkleri engelleyeceği için istenmez. ****lik yüzeyler dışındaki yüzeylerde oluşan bu tür yansımada polarize edilmiş ışık vardır.

2. Dağılma:

Çok küçük ve fazla sayıda partiküllerin bulunduğu bir ortama giren ışık bu ortamdan geçerken bu minik parçacıklara çarpıp her yansıyışında küçük yön değişiklerine uğrar. Böylece çok küçük su ve toz taneciklerinin bulunduğu hava tabakasından geçen güneş ışığı sayısız defa bu parçacıklara çarparak seker ve yön değiştirir. Sonuçta yer yüzündeki gözlemcinin gözüne ulaşır. Ancak ışınlardaki bu sapma karakter olarak üniform değildir. Eğer tanecikler göreceli olarak büyük iseler, yani çapları üzerlerine düşen ışığın dalga boyundan birkaç misli büyük ise, bu taneciklere çarpan ışınla herhangi bir değişikliğe uğramazlar.

Örneğin bir su buharı tabakasından (bulutlar) geçen güneş ışığı özelliğini değiştirmeyerek yine beyaz olarak gözümüze ulaşır. Bu tür sapmaya difüzyon yani dağılma diyoruz. Ancak ışınları yansıtan parçacıklar çok küçük ise yani çapları ışığın 1 dalga boyu uzunluğu civarında ise çarpıp yansıma seçici hale gelir. Yani belli tür renkler bu halden meydana gelir ve buna yayılma deriz.

Yayılma spektrumun kısa dalga boylu renklerinin yer aldığı mavi ucunu, uzun dalga boylarının yer aldığı kırmızı ucundan daha fazla etkiler. Bu yüzden de çok küçük parçacıkların yer aldığı hava tabakasından geçen güneş ışığı yayılmalara uğrar ve göğe bildiğimiz mavi rengini verir. Aynı olay uzaklarda pus içinde görülen cisimlerin maviliğini de açıklar.

Güneşin doğma ve batma zamanlarında göğün kırmızımsı görünmesinin sebebi de ışığın dağılmasındandır. Güneş zenit noktasında iken ışınları göreceli olarak ince bir tozlu hava tabakasından geçerler. Bunun sonucunda sadece göreceli olarak küçük bir miktar kısa dalga boylu ışınlar yayılmaya uğrarlar. Bu yüzden de öğle saatindeki güneş ışığı beyaz görünür.

Gün doğumu ve gün batımı zamanlarında ise güneş dünyayı ve gözlemciyi dünyanın tanjantını yala***** geçer. Böylece ışınlar bu durumda tozlu hava tabakasının içinde oldukça fazla yol almak durumunda kalırlar. Bunun sonucunda daha fazla sayıda büyük partiküle çarpan ışınlar, kırmızı rengin daha çok ortaya çıkmasına yol açarlar. Çünkü bu şartlar altında yayılma olayından sadece kırmızı dalga boyları etkilenmeden kurtulurlar.

3.6. Rengin Kompozisyonları :

Çok küçük istisnalar dışında (ki bunlar dağılma veya kırılma ile elde edilen spektrum renklerdir) gözümüzle gördüğümüz renkler hiçbir zaman saf değildirler. Yani her bir renk, spektrumdaki bir tek dalga boy undan oluşmaz. Dar bir frekanslar grubundan da oluşmaz. Bunun yerine çoğu renkler sıklıkla birbirinden çok farklı (mavi, kırmızı gibi yada kırmızı ve yeşil gibi) renklerin karışımından oluşurlar. Renk konusuna girildiğinde şu belirlemenin yapılması şarttır.

1. Gördüğümüz haliyle renk. Yani beyin içindeki kişisel ve özel bir deneyim.
2. Objelerin üzerinde bulunan ve bu renk duygusunu uyandıran yüzeylerin yapısı. Yani, renklendirici.

Renk dediğimiz duygu tamamı ile kişisel ve özeldir ve herhangi bir analitik araştırmaya tabii tutulamayacak kadar gizlidir. Renkli yüzeyler ise uygun bilimsel yöntemlerle araştırılabilen fiziksel objelerdir. O halde bu iki olgu için farklı terimler kullanmak gerekecektir.

Renk : Beyin içindeki oluşan ve renklendiricinin sebep olduğu özel psikolojik uyarıcı.
Renklendirici : Beyindeki renk duygusunu uyandıran fiziksel objeler.

Işıkla renklendirici arasındaki alışverişi inceleyebilmek için renkli objelere farklı ışıklar altında bakmak gerekir. Bunun için de farklı Filtreler kullanılabilir. Örneğin mavi bir objeye kırmızı bir Filtre ile bakıldığında obje siyah görünecektir. Bunun sebebi, Filtrenin kırmızı boyasının beyaz ışığın mavi bölümünü emmesi, dolaysı ile mavinin geçememesidir. Bu durum siyah beyaz fotoğrafta, kırmızı Filtrenin, neden mavi göğü karartarak beyaz bulutları öne çıkarmasını da açıklar. Kırmızı Filtre gök ışığı içinden mavi ışığı da emerek, mavi göğün pozunu beyaz bulutların pozundan daha fazla düşürür. Böylece negatifte mavi göğün yeri boş alır. Beyaz bulutların rengi sarı ve kırmızıyı da içerir. Bu renkler de kırmızı Filtre tarafından geçirilir.

Herhangi bir renklendiricinin ışık üzerindeki etkisi ışığın içindeki belli dalga boylarını emmek şeklinde görülür. Kendi rengini mevcut dalga boylarının rengine ilave etmek şeklinde değil. Diğer bir deyimle renk olarak algıladığımız şey, obje üzerine düşen ışığın renklendirici tarafından değiştirildikten sonra göze ulaşmış halidir. Örneğin gün ışığında yeşil yaprakların yeşil görünmelerinin sebebi, klorofilin beyaz ışık içinde bulunan mavi ve kırmızıyı kuvvetle emip, yeşili geri yansıtmasıdır. Bunun gibi kırmızı bir otomobilin boyasındaki renklendirici, beyaz ışığın içindeki mavi ve yeşil bölümleri emip, kırmızıyı geri yansıtır.

Bir renklendiricinin ışığı değiştirme etkisi, ışığı yansıtsa da geçirse de aynıdır. Örneğin, güneşe bir yeşil yaprağın içinde de baksak, o yeşil yaprağa güneşin altından da baksak, yeşil aynı yeşildir. Çünkü her iki durumda da renk, ışık ile renklendiricinin molekülleri arasındaki aynı tür ilişkiden kaynaklanmaktadır. Yani atomlar, ışığın içindeki bazı dalga boylarını ya emerler ya da geri yansıtırlar. Geri yansıyan dalga boylarını da renk olarak görürüz. Bu durum bir objenin neden sadece o objeyi aydınlatan ışığın içindeki dalga boylarından birinin veya birkaçının rengine sahip olabildiğini de açıklar. Bu anlatımın tersi de, bir obje kendisini aydınlatan ışığın içinde bulunmayan bir renge sahip olamaz. Bu yüzden de gün ışığında kırmızı görünen bir obje, (ki gün ışığında kırmızı dalga boyları çoğunluktadır) saf yeşil ışıkla aydınlatıldığında (ki içinde kırmızı dalga boyları yoktur) siyah görünür.

Tüm modern renk sistemleri ve matbaa renk ayırım sistemleri çıkarımsal renk karışımı esasına dayanır. Toplamsal renk karışım sistemi yalnızca ışık kaynakları için geçerlidir.

Renkli dialarda ki bütün renkler üç çıkarımsal temel renk olan Magenta, Sarı ve Cyan�ın farklı miktarlarda karışımından meydana gelir. Bir renkli dia kazındığında bu katmanlar kolaylıkla görülebilir. Toplamsal renk karışım sistemi günlük hayatta karşımıza en çok TV ekranı ve renkli monitörlerde çıkar.
Kedi isimli Üye şimdilik offline konumundadır   Alıntı ile Cevapla