Tekil Mesaj gösterimi
Alt 07.07.08, 22:21   #2 (permalink)
Kullanıcı Profili
smtyksl
Delta Üye
 
smtyksl - ait Kullanıcı Resmi (Avatar)
Kullanıcı Bilgileri
Üyelik tarihi: Jan 2008
Nerden: SaMSuN
Mesajlar: 776
Konular: 146
Puan Grafiği
Rep Puanı:1997
Rep Gücü:0
RD:smtyksl has a brilliant futuresmtyksl has a brilliant futuresmtyksl has a brilliant futuresmtyksl has a brilliant futuresmtyksl has a brilliant futuresmtyksl has a brilliant futuresmtyksl has a brilliant futuresmtyksl has a brilliant futuresmtyksl has a brilliant futuresmtyksl has a brilliant futuresmtyksl has a brilliant future
Teşekkür

Ettiği Teşekkür: 0
17 Mesajına 80 Kere Teşekkür Edlidi
:
icon



TAM DALGA DOĞRULTMAÇ

Basit ve ekonomik DC güç kaynaklarının yapımında yarımdalga doğrultmaç devreleri kullanılır. Profesyonel ve kaliteli DC güç kaynaklarının yapımında ise tam dalga doğrultmaç devreleri kullanılır. Tam dalga doğrultmaç devreleri; orta uçlu ve köprü tipi olmak üzere iki ayrı tipte tasarlanabilir.

Bu bölümü bitirdiğinizde; aşağıda belirtilen konular hakkında ayrıntılı
bilgiler elde edeceksiniz.

-Yarımdalga doğrultmaç ile tam dalga doğrultmaç arasındaki farklar.
-Tamdalga doğrultmaç devresinde elde edilen çıkış işaretinin analizi
-Orta uçlu tamdalga doğrultmaç devresinin analizi
-Köprü tipi tamdalga doğrultmaç devresinin analizi

Bir önceki bölümde yarım dalga doğrultmaç devresini incelemiştik. Yarım dalga doğrultmaç devresinde şehir şebekesinden alınan sinüsoydal işaretin sadece tek bir alternansında doğrultma işlemi yapılıyor, diğer alternans ise kullanılmıyordu. Dolayısıyla yarımdalga doğrultmacın çıkışından alınan gerilimin ortalama değeri oldukça küçüktür. Bu ekonomik bir çözüm değildir. Tamdalga doğrultmaç devresinde ise doğrultma işlemi, şebekenin her iki alternansında gerçekleştirilir. Dolayısıyla çıkış gerilimi daha büyük değerdedir ve DC’ye daha yakındır. Bu durum şekil-3.9 üzerinde ayrıntılı olarak gösterilmiştir.



örneğin tamdalga doğrultmaç girişine 17V tepe değerine sahip sinüsoydal bir işaret uygulanmışsa bu durumda çıkış işaretinin alacağı değer;




olarak elde edilir. Bu durum bize tamdalga doğrultmaç devresinin daha avantajlı olduğunu kanıtlar.


TAMDALGA DOĞRULTMAÇ DEVRESİ



Tamdalga doğrultmaç devresi şekil-3.10’da görülmektedir. Bu devre orta uçlu bir transformatör ve 2 diyot kullanılarak gerçekleştirilmiştir. Transformatörün primer sargılarına uygulanan şebeke gerilimi, transformatörün sekonder sargılarında tekrar elde edilmiştir. Sekenderde elde edilen geriliminin değeri transformatör dönüştürme oranına bağlıdır.

Transformatörün sekonder sargısı şekilde görüldüğü gibi üç uçludur ve orta ucu referans olarak alınmıştır. Sekonder sargısının orta ucu referans (şase) olarak alındığında sekonder sargıları üzerinde oluşan gerilimin dalga biçimleri ve yönleri şekil-3.10 üzerinde ayrıntılı olarak gösterilmiştir.




Orta uçlu tamdalga doğrultmaç devresinin incelenmesi için en iyi yöntem şebeke geriliminin her bir alternansı için devreyi analiz etmektir. Orta uç referans olarak alınırsa, sekonder gerilimi iki ayrı değere (Vsek/2) dönüştürülmüştür. Örneğin; Vgiriş işaretinin pozitif alternansında, transformatörün sekonder sargısının üst ucunda pozitif bir gerilim oluşacaktır.

Bu durumda, D1 diyodu doğru polarmalandırılmış olur. Akım devresini; trafonun üst ucu, D1 diyodu ve RL yük direnci üzerinden transformatörün orta ucunda tamamlar. RL yük direnci üzerinde şekil-3.11’de belirtilen yönde pozitif alternans oluşur. Akım yönü ve akımın izlediği yol şekil üzerinde ayrıntılı olarak gösterilmiştir.





Şebekenin negatif alernansında; transformatörün sekonder sargılarında oluşan gerilim düşümü bir önceki durumun tam tersidir. Bu durumda şaseye göre; sekonder sargılarının üst ucunda negatif alternans, alt ucunda ise pozitif alternans oluşur. Bu durum şekil-3.12 üzerinde ayrıntılı olarak gösterilmiştir. Bu durumda D2 diyodu iletken, D1 diyodu ise yalıtkandır. Akım devresini trafonun orta ucundan başlayarak D2 üzerinden ve RL yükü üzerinden geçerek tamamlar. Yük üzerinde şekil-3.12’de belirtilen dalga şekli oluşur. Akım yolu ve gerilim düşümleri şekil üzerinde gösterilmiştir.


PRÜ TİPİ TAMDALGA DOĞRULTMAÇ



Tamdalga doğrultmaç devresi tasarımında diğer bir alternatif ise köprü tipi tamdalga doğrultmaç devresidir. Köprü tipi tamdalga doğrultmaç devresi 4 adet diyot kullanılarak gerçekleştirilir. Şehir şebekesinden alınan 220Vrms/50Hz değere sahip sinüsoydal gerilim bir transformatör kullanılarak istenilen değere dönüştürülür.

Transformatörün sekonderinden alınan gerilim doğrultularak çıkıştaki yük (RL) üzerine aktarılır. Doğrultma işleminin nasıl yapıldığı şekil-3.14 ve şekil-3.15 yardımıyla anlatılacaktır.

Şehir şebekesinin pozitif alternansında; transformatörün sekonder sargısının üst ucunda pozitif alternans oluşur. D1 ve D2 diyodu doğru yönde polarmalandığı için akım devresini D1 diyodu, RL yük direnci ve D2 diyodundan geçerek transformatörün
alt ucunda tamamlar. RL yük direnci üzerinde pozitif alternans oluşur. Bu durum ve akım yönü şekil-3.14’de ayrıntılı olarak gösterilmiştir.





Şebekenin negatif alternansında; bu defa transformatörün alt ucuna pozitif alternans oluşacaktır. Bu durumda D3 ve D4 diyotları doğru yönde polarmalanır ve iletime geçerler. Akım devresini; D4 diyodu, RL yük direnci ve D3 diyodu üzerinden geçerek transformatörün üst ucunda tamamlar ve RL yük direnci üzerinde pozitif alternans oluşur. Bu durum ayrıntılı olarak şekil-3.15 üzerinde gösterilmiştir.



değerine eşit olur. Doğrultma işleminde tek bir alternans için iki adet diyot iletken olduğunda diyotlar üzerinde düşen öngerilimler dikkate alındığında RL yük direnci üzerinde oluşan çıkış gerilimin tepe değeri;



DOĞRULTMAÇ FİLTRELERİ

Yarımdalga ve tamdalga doğrultmaç devrelerinin çıkışlarından alınan doğrultmuş sinyal ideal bir DC sinyalden çok uzaktır. Doğrultucu devrelerin çıkışından alınan bu sinyal, darbelidir ve bir çok ac bileşen barındırır. Şehir şebekesinden elde edilen doğrultulmuş sinyal çeşitli filtre devreleri kullanılarak ideal bir DC gerilim haline dönüştürülebilir.

En ideal filtreleme elemanları kondansatör ve bobinlerdir. Bu bölümde bitirdiğinizde aşağıda belirtilen konular hakkında ayrıntılı bilgiler elde edeceksiniz.

-Filtre işleminin önemi ve amaçlarını,
-Kondansatör © ile gerçekleştirilen kapasitif filtre işlemini
-Rıpıl gerilimini ve rıpıl faktörünü
-LC filtre
-Π ve T tipi filtreler

DC Güç kaynağı tasarımı ve yapımında genellikle 50Hz frekansa sahip şehir şebeke geriliminden yararlanılır. Bu gerilim tamdalga doğrultmaç devreleri yardımıyla doğrultulur. Doğrultmaç çıkışından alınan gerilim ideal bir DC gerilim olmaktan uzaktır. Çeşitli darbeler barındırır ve 100Hz’lik bir frekansa sahiptir. Bu durum şekil-3.17’de ayrıntılı olarak gösterilmiştir.



Doğrultmaç çıkışından alınan gerilim, büyük bir dalgalanmaya sahiptir ve tam bir DC gerilimden uzaktır. Filtre çıkışında ise dalgalanma oranı oldukça azaltılmıştır. Elde edilen işaret DC gerilime çok yakındır. Filtre çıkışında küçük de olsa bir takım dalgalanmalar vardır. Bu dalgalanma “Rıpıl” olarak adlandırılır. Kaliteli bir doğrultmaç devresinde rıpıl faktörünün minimum değere düşürülmesi gerekmektedir.

KAPASİTİF FİLTRE

Doğrultmaç devrelerinde filtrelemenin önemi ve işlevi hakkında yeterli bilgiye ulaştık. Filtreleme işlemi için genellikle kondansatör veya bobin gibi pasif devre elemanlarından faydalanılır. Doğrultmaç devrelerinde, filtreleme işlemi için en çok kullanılan yöntem kapasitif filtre devresidir. Bu filtre işleminde kondansatörlerden yararlanılır.

Kapasitif filtre işleminin nasıl gerçekleştirildiği bir yarım dalga doğrultmaç devresi üzerinde şekil-3.18 yardımıyla ayrıntılı olarak incelenmiştir. Kondansatör ile gerçekleştirilen filtre işlemi şekil-3.18’de ayrıntılı olarak gösterilmiştir. Sisteme enerji verildiğinde önce pozitif alternansın geldiğini varsayalım. Bu anda diyot doğru polarmalandığı için iletkendir. Üzerinden akım akmasına izin verir. Pozitif alternansın
ilk yarısı yük üzerinde oluşur. Devredeki kondansatörde aynı anda pozitif alternansın
ilk yarı değerine şarj olmuştur. Bu durum şekil-3.18.a üzerinde gösterilmiştir.
smtyksl isimli Üye şimdilik offline konumundadır   Alıntı ile Cevapla